

DAMES & MOORE

HAZARDOUS WASTE PROGRAM MISSOURI DEPARTMENT OF NATURAL RESOURCES

RECEIVED

FEB 20 1996

GEOL SECTION

FINDINGS OF AN INVESTIGATION TO ACHIEVE FINAL CLOSURE OF THE INTERIM TSD FACILITY LOCATED AT THE MODINE HEAT TRANSFER, INC. SITE CAMDENTON, MISSOURI

Prepared For MODINE MANUFACTURING COMPANY

Springfield, Missouri

Dames & Moore Job No. 27397-005-045 February 12, 1996

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	BACKGROUND INFORMATION
3.0	SITE ENVIRONMENT 3.1 Soil
4.0	WORK PERFORMED 4.1 Excavation of Lead Impacted Soil 4.2 Soil Boring Advancement and Soil Sampling 4.2.1 Soil Boring Advancement 4.2.2 Soil Sampling 4.3 Monitoring Well Installation and Groundwater Sampling 4.3.1 Monitoring Well Installation 4.3.2 Groundwater Sampling 4.3.3 Quarterly Groundwater Sampling 4.4.4 Field Quality Assurance/Quality Control 4.5 Waste Handling and Site Restoration
5.0	RESULTS
6.0	CONCLUSIONS166.1 Soil Analysis166.2 Groundwater Analysis166.3 Geologic and Hydrogeologic Interpretation17
7.0	POTENTIAL FUTURE FOLLOW-UP WORK
3.0	REFERENCES 20

TABLE OF CONTENTS

(Continued)

	TABLES
Table 1	Excavation Disposal Profiling Composite Soil Sample
	Excavation Soil Analytical Results
Table 2	Soil Boring Analytical Results
Table 3	Groundwater Analytical Results
Table 4	Well Completion Data
	FIGURES
Figure 1	Site Location Map
Figure 2	Soil Boring and Monitoring Well Locations
Figure 3	Calculated Groundwater Map
Figure 4	Possible Groundwater Contour Map
Figure 5	Three-Dimensional View of a Fracture and Associated ATV Log
	ADDENIDICES
Annondia A	APPENDICES
Appendix A	Soil Boring and Monitoring Well Logs
Appendix B	Laboratory Analytical Results

1.0 INTRODUCTION

Modine Manufacturing Company (Modine) is submitting this report presenting the findings from work conducted in accordance with the "Work Plan Modification for an Investigation to Achieve Final Closure of the Interim TSD Facility at the Modine Heat Transfer, Inc. Site Camdenton, Missouri" (Work Plan). The revised Work Plan was submitted to the Missouri Department of Natural Resources (MoDNR) on June 1, 1995.

Based on the past site activities, findings of past investigations, and requirements of the state of Missouri, Dames & Moore, Inc. (Dames & Moore) conducted a soil and groundwater investigation. This investigation included: advancement of six soil borings, installation of two monitoring wells, collection of soil and groundwater samples, and removal of the impacted soil in the area of elevated lead concentrations. The purpose of this investigation was to further define the extent of contamination, identify the impact to groundwater, and attempt to obtain sufficient data to achieve final closure of the Resource Conservation and Recovery Act (RCRA) regulated interim treatment, storage, or disposal (TSD) facility at the Modine Heat Transfer, Inc. site in Camdenton, Missouri.

2.0 BACKGROUND INFORMATION

2.1 Site Location and Operations

The Modine Heat Transfer, Inc. site is located on Sunset Drive in Camdenton, Missouri. The site occupies approximately 100 acres in Section 26, Township 38 North, Range 17 West in Camden County (Figure 1). The one manufacturing plant at the site occupies approximately 120,000 square feet and has undergone four construction additions through its history (1971, 1973, 1979, and 1983).

Operations began at the site in 1967 under the ownership of Dawson Metal Products. Sundstrand Heat Transfer Products (Sundstrand) purchased the site in 1972 and operated it until 1990. Modine Heat Transfer, Inc., a wholly owned subsidiary of Modine Manufacturing Company, purchased the site in October 1990. The site has always been utilized in the manufacture of aluminum and copper coils and feeder parts used in the manufacture of heat transfer products.

2.2 Regulatory History and Previous Site Investigations

A Resource Conservation and Recovery Act (RCRA) Part A Permit application to operate a storage facility was submitted by the former owners of the facility (Sundstrand) to the U.S. Environmental Protection Agency (USEPA) in November 1980. A RCRA Part B Permit application has never been filed; therefore, the facility has been operating as a treatment, storage, or disposal (TSD) facility under interim status.

Prior to purchase of the site by Modine, Sundstrand submitted a Closure Plan in September 1990 to terminate its interim status and hold generator status only. The Closure Plan addressed three former storage areas, all located on the west side of the building. The three areas covered by the Closure Plan include:

- Area 1: 1980 1983 Drum Storage Area
- Area 2: 1983 1985 Tank and Drum Storage Area
- Area 3: 1985 1990 Tank and Drum Storage Area

In response to unrelated allegations of a release of spent solvent filed with MoDNR, Modine conducted an Environmental Site Assessment (ESA) at the facility in November 1991. At the time of the investigation the area of the suspected release housed the monorail degreaser and associated containment pit. Soil samples were taken and the results indicated generally low (less than 1 part per million (ppm)) volatile organic compound (VOC) concentrations with the exception of 1,1,1-Trichloroethane (TCA) and Trichloroethene (TCE) detected at higher concentrations.

Due to the constituents identified during the ESA, MoDNR conducted a site inspection in July 1992 that included installation of the two on-site monitoring wells. Based upon the results of this investigation the Superfund Section of the MoDNR Hazardous Waste Program concluded that no further action was necessary.

A spill of TCA occurred in early 1992 from a monorail degreaser in the plant (same area investigated in ESA 11/91). It was estimated that after recovery, there was a loss of approximately 206-gallons of solvent, which was primarily attributable to volatilization of the solvent.

Approval of the closure plan with modifications was granted by MoDNR in November 1992. Subsequent negotiations regarding the modifications resulted in an agreement being reached in March 1993. The Closure Plan modifications included collection of soil samples and wipe samples. The results of an investigation conducted in July 1993, indicated VOC concentrations of less than 0.1 ppm in all soil samples collected and one elevated lead concentration of 1,400 ppm in boring B-11 adjacent to Area 2. Based upon these results; final closure of the TSD facility was not granted by MoDNR in March 1994. Rather than do excessive excavation and investigation Modine requested to demonstrate a risk-based closure. An environmental risk assessment (risk assessment analysis of the soil) was conducted in August of 1994 to assess the potential impacts on human health from the soil. The results indicated the following: no health risk was posed by the minimal amounts of VOCs in the soil, and that lead in soil was not considered a significant risk based constituent. The Assessment concluded that further soil remediation was not necessary based upon risk. Following completion of the risk assessment, Modine was notified by MoDNR that the assessment did not fulfill the closure requirements with regard to the groundwater issue.

MoDNR conducted a RCRA sampling investigation on December 7, 1994. The purpose of the investigation was to sample the two on-site monitoring wells. Analytical results indicated that there was TCE detected at concentrations ranging from below 5 parts per billion (ppb) to 6.9 ppb.

Another round of sampling of the two on-site monitoring wells was conducted on February 23, 1995, by Modine. The results from this sampling event indicated no TCE concentrations at detectable levels above 5 ppb.

3.0 SITE ENVIRONMENT

The site is located on an east to west trending small ridgetop on the Salem Plateau, a subprovince of the Ozark Province. Ground surface at the site is mildly sloping to the south and west to steeply sloping to the south on the southern portion of the site. Topographic relief across the majority of the site is approximately 20 feet. Elevation at the plant is approximately 960 feet above mean sea level (msl).

3.1 Soil

The predominant soil at the site is classified as the Lebanon silt loam by the U.S. Soil Conservation Service (SCS). This soil is a gently sloping (2 to 5 percent slopes), moderately well drained soil that typically forms on ridgetops. The surface layer is typically dark brown silt loam approximately 6 inches thick. The 17 inch thick subsoil, present above a fragipan, is composed of brown silty clay loam to gray-brown mottled silty clay. The fragipan is about 14 inches thick and consists of a very dense brown-gray mottled extremely cherty silt loam. Beneath the fragipan, and extending to bedrock, is a red-brown mottled very cherty to cherty clay. Permeability in the Lebanon soil is characterized as slow (0.06 to 0.2 inches per hour (in/hr)) to very slow (less than 0.06 in/hr).

Other soil types present at the site, primarily on the south and far west sides, include the Doniphan very cherty silt loam and the Niangua-Bradley very cherty silt loam. Permeability in these soil types are moderate (0.6 to 2.0 in/hr) to moderately slow (0.2 to 0.6 in/hr), with the exception of the top one foot of the Doniphan where permeability is moderately rapid (2.0 to 6.0 in/hr).

The soil types encountered during this investigation include a red to brown clay with chert fragments and in some areas a grey clay with chert gravel in red clay. A distinct fragipan was not encountered in any of the borings. This residuum soil is reported (Whitfield) to contain as much as 5 to 15 percent chert and sandstone fragments.

3.2 Geology

The bedrock unit lying directly below the soil at the site is a cherty dolomite of the Ordovician age Roubidoux Formation. The Roubidoux Formation is generally 130 to 150 feet thick and consists of cherty dolomite, chert, and sandstone. The formation has entire layers of hard, brittle chert. In Camden County the Roubidoux has less sandstone than in counties further south. Beneath the Roubidoux is the Ordovician age Gasconade Dolomite 290 to 330 feet thick (which includes the 15 to 20 feet thick Gunter Sandstone Member at its base), the Cambrian age Eminence Dolomite 300 to 350 feet thick, and underlying the Eminence Dolomite are Precambrian granites and gneiss.

Based upon the results of this investigation it appears that competent bedrock was encountered at the site at depths ranging from approximately 32.5 feet below ground surface (bgs) in MW-4 to 55 feet bgs in MW-3. The results of this and previous investigations indicate that when drilling with a hollow stem auger, refusal was encountered at depths ranging from 4.5 feet to 13 feet bgs. We believe that the refusal was at the encounter of chert nodules and remnant rock fragments.

3.3 Hydrogeology

The occurrence of perched water tables in the Lebanon silt loam are common during the winter and spring months. The perched water tables occur at the fragipan in some areas and at the soil/rock interface in most areas. Groundwater at the soil/rock interface is of insufficient volume and duration to yield amounts viable for domestic use. No perched groundwater was encountered during the advancement of the two groundwater monitoring wells installed as part of this investigation.

The existing monitoring wells at the site exhibited static water levels ranging from approximately 140 to 150 feet bgs in MW-1 and approximately 150 to 175 feet bgs in MW-2. The wells were completed to total depths of 161 feet bgs and 197 feet bgs for MW-1 and MW-2, respectively. The newly installed monitoring wells at the site had reported static water levels ranging from approximately 147 to 149 feet bgs in MW-3 and approximately 149 to 150 feet bgs in MW-4. The newly installed wells were completed to total depths of 167 feet bgs at MW-3 and 158 feet bgs at MW-4. In all wells the groundwater zone being monitored is reportedly the first encountered groundwater within bedrock. The wells are completed in the base of the Roubidoux Formation or the top of the Gasconade Dolomite.

A literature search revealed that Hahatonka Springs located approximately 2.5 miles south of the Modine facility is situated near a northwest trending fault zone. Information indicates that springs in the Niangua river basin appear roughly along this fault line. As stated by Vineyard in *Springs of Missouri*, "These fault zones may represent preferred directions of jointing along which the principal solution channels are developed." He goes on to indicate that these main solution channels may connect with a set of smaller channels which would intersect at right angles with the main channel. Evidence of this channeling network is illustrated in the stream alignment

in this area in which main streams tend to exhibit a northwest trend and smaller streams complete a crude rectangular network.

4.0 WORK PERFORMED

The field work was conducted at the Subject Property in August 1995 and November 1995. A project specific Health and Safety Plan was developed for Dames & Moore personnel and a health and safety briefing was held prior to initiation of the work.

4.1 Excavation of Lead Impacted Soil

A lead impacted area was identified in the area of boring B-11 during a follow-up investigation conducted by Law Environmental in July, 1993. Lead is not identified as a constituent previously stored at the facility, however, MoDNR requested that the issue of elevated lead concentrations be addressed. Due to the shallowness of the elevated lead concentration (0 to 2 feet bgs), excavation and disposal of the impacted soil near B-11 was the most efficient way to resolve the issue.

Prior to excavating the impacted area a composite sample was collected from 0 to 3 feet bgs. The sample was analyzed for Toxicity Characteristic Leaching Procedure (TCLP) Metals and Corrosivity to determine if the soil was characteristically hazardous. The results of the tests indicated that the soil was not characteristically hazardous and as such could be disposed as Special Waste. A Paint Filter test also was run on the soil to assess the amount of free liquids for disposal profiling. No free liquids were present.

Dames & Moore contracted Sunbelt Environmental Services, Inc. (Sunbelt) to perform the excavation activities. The activities began with the removal of soil to a depth of approximately four feet and an areal extent of approximately three feet in all directions from B-11. Once the soil was removed a sample was collected from the base and all four walls. The samples were analyzed for total lead concentrations by EPA Method 6010. The excavation pit remained open pending receipt of the analytical results, then the excavation was backfilled with one-inch base rock. The analytical results for the excavated soil are discussed in Section 5.0 of this report.

Approximately 12 cubic yards of soil were removed from the impacted area. The soil was hauled for disposal by Sunbelt to the Laidlaw Waste System, Inc. (Laidlaw) operated landfill in Jefferson City, Missouri.

4.2 Soil Boring Advancement and Soil Sampling

The purpose of the advancement and sampling of soil borings was to assess the rate and extent of the VOC contamination previously identified. The MoDNR Hazardous Waste Program (HWP) requires the determination of rate and extent for proper closure of all TSD facilities.

4.2.1 Soil Boring Advancement

Layne-Western Company, Inc. was subcontracted by Dames & Moore for drilling services. Personnel from their Kansas City office conducted the advancement of the soil borings using a truck-mounted hollow stem auger drilling rig. A total of six soil borings were advanced at the facility. The soil boring locations were surveyed horizontally for accurate placement by a registered land surveyor contracted by Dames & Moore and the locations are shown on Figure 2.

4.2.2 Soil Sampling

Soil samples were continuously collected from all borings with a stainless steel split spoon sampler two feet in length. The sampler was advanced ahead of the augers with a hydraulic hammer. The depths of the soil borings ranged from approximately 4.5 feet to 13 feet bgs. All of the borings were advanced until auger refusal was encountered. Soil borings were logged by a Dames & Moore representative in accordance with the Unified Soil Classification System (USCS). Boring logs are presented in Appendix A.

Prior to collecting soil samples from the borings, the outer portion of each core sample was trimmed using a stainless steel knife to alleviate possible impact from the soil sampling device. Soil samples collected were split into two portions. Both portions were stored in labeled quart-sized Ziploc® plastic bags. One portion was immediately placed in an iced cooler for possible submittal to the analytical laboratory and the other portion was reduced by hand and placed in direct sunlight for five minutes prior to taking a headspace reading to approximate organic constituent concentrations in headspace vapor. A Thermo-Environmental OVM Model 580-B

photoionization detector (PID) was used to take the headspace readings by puncturing the plastic bag with the tip of the probe. The PID was calibrated daily to a 100 parts per million (ppm) isobutylene standard.

Soil samples submitted to the laboratory were selected for submittal based on headspace readings. The intent was to select samples exhibiting no presence of VOCs from the greatest depth at locations furthest from the potential source. Samples were submitted to the laboratory for analysis from three of the six soil borings advanced at the site. The sample depths ranged from 6 inches to 13 feet. Two of the samples submitted for analysis exhibited no presence of VOCs as had been proposed in the work plan. The third sample selected for submittal exhibited a PID reading of 787 ppm in isobutylene equivalents. The following soil samples were selected for the following suite of analyses from the soil borings:

Sample ID	<u>Depth</u>	Requested Analysis
B-13	8.5'-13'	VOCs -EPA Method 8010
B-16	6"-4.5'	VOCs - EPA Method 8010
B-17 (MW-3)	4.5'	VOCs - EPA Method 8010

The results of the soil analysis are presented in Table 2 and discussed in Section 5.0 of this report.

Personnel conducting the soil sampling wore clean disposable latex gloves. The iced portion of the selected sample was transferred to a properly labeled and sized glass jar and placed in an iced cooler for shipment. The soil samples selected for analysis were shipped in an iced cooler, under Chain-of-Custody documentation, by overnight delivery to ATAS, Inc. in Maryland Heights, Missouri. Chain-of-Custody documentation is presented along with analytical results is Appendix B.

4.3 Monitoring Well Installation and Groundwater Sampling

The Work Plan proposed the installation of one monitoring well in the assumed downgradient direction. The purpose of the monitoring well was to aid in the determination of groundwater flow direction and to provide an additional sampling point for chemical analysis of the groundwater. It was assumed that the well would serve as a true downgradient well from any potential on-site source and aid in assessing the extent of the observed TCE impact to groundwater.

4.3.1 Monitoring Well Installation

Layne-Western Company, Inc. was subcontracted by Dames & Moore for drilling services. Personnel from their St. Louis office conducted the installation of the monitoring wells using an air rotary drilling rig. Prior to implementation of field work, a request for a well completion variance was submitted to MoDNR to allow open-hole completion of the on-site monitoring wells. Variance number 00322 was obtained from MoDNR.

Monitoring well (MW-3) was installed in the south central portion of the subject property. The well was completed and surveyed for elevation. The water level was gauged and groundwater flow direction was determined to be in a northwesterly direction. This flow direction indicated that MW-3 was not located downgradient of the former drum storage area; therefore, an additional monitoring well (MW-4) was installed northwest of the former drum storage area.

Both wells were advanced until competent bedrock was encountered. Competent bedrock was encountered at a depth of 55 feet bgs in MW-3 and at a depth of 32.5 feet bgs in MW-4. Schedule 40 steel, five inch diameter, threaded surface casing was installed 8 to 10.5 feet into the competent bedrock. In MW-3, 64 feet of casing was installed and in MW-4, 44 feet of casing was installed. The surface casing was grouted into place with a cement/bentonite slurry containing 2% calcium chloride. Calcium chloride was added to allow for the cement to set up overnight. The well was re-entered and air drilled using a 4 and 3/4 inch diameter drill bit. The wells were completed at total depths of 167 feet (MW-3) and 158 feet (MW-4). Both of the wells were developed by air lifting. Completion information for these newly installed wells and available information on previously installed wells is presented in Table 4.

4.3.2 Groundwater Sampling

Groundwater sampling was conducted on all four of the monitoring wells after installation of MW-3 and MW-4. Prior to sampling, the wells were gauged to assess groundwater levels and determine the volume of water to be purged. The monitoring wells were purged in accordance with RCRA Ground-Water Monitoring TEGD guidelines. A minimum of three well volumes were purged or the wells were purged until they went dry. Purging was done with a disposable, polyethylene bailer at MW-1, a decontaminated stainless steel bailer at MW-2, a Grundfos® Redi-Flo2 Submersible Pump with dedicated reinforced hose at MW-3, and a 3.5 inch diameter PVC bailer was used to purge MW-4. The purged water was containerized in 55-gallon drums located at each well.

Sampling of each well was conducted with a dedicated disposable bailer and new polyrope. The bailer was slowly lowered into the water to minimize agitation. Samples were transferred from the bailer to the sample containers in a manner as to minimize agitation and aeration. Personnel conducting the groundwater sampling wore clean disposable latex gloves. In addition to the samples collected, a duplicate sample was collected at MW-2 and an equipment blank was collected from the stainless steel bailer. The samples were shipped in an iced cooler by overnight delivery service to ATAS, Inc. for VOC analysis under proper Chain-of-Custody.

4.3.3 Quarterly Groundwater Sampling

Since 180 days were available for submittal of this report, it was decided to include a round of quarterly sampling to aid in assessment of the groundwater impact at the site. The quarterly round of sampling was conducted in November, 1995. The purging of the wells was conducted in the same manner as the initial sampling, although different equipment was used on MW-2 and MW-4. A disposable, polyethylene bailer was used to purge MW-2 and Grundfos® Redi-Flo 2 Submersible Pump with dedicated reinforced hose was used to purge MW-4.

Sampling techniques remained the same with samples being collected from all wells and a duplicate sample collected from MW-4. The samples were shipped in an iced cooler by overnight delivery service to ATAS, Inc. for VOC analysis under proper Chain-of-Custody. The results of the groundwater sampling is presented in Table 3 and discussed in Section 5.0 of this report.

Presently, quarterly sampling of the monitoring wells is scheduled to continue. Gauged water levels in all the wells were slightly lower than during the initial sampling event.

4.4 Field Quality Assurance/Quality Control

Measures were taken to reduce the possibility of cross contamination between soil borings and between sampled intervals. Prior to collecting soil samples from the borings, the outer portion of each core sample was trimmed using a stainless steel knife to alleviate possible impact from the soil sampling device. After each use, soil samplers and trimming tools were decontaminated with a laboratory-grade detergent solution (Alconox®) wash and a tap water rinse. Augers were decontaminated with a high pressure hot water wash prior to the start of drilling activities. A decontaminated auger was used for the advancement of each hole. Personnel who handled tools and collected samples wore a new pair of disposable surgical gloves for each sample acquisition.

Prior to beginning the air drilling activities, the drill bit, drill rods, and back of the drilling rig were decontaminated with a high pressure hot water wash. The casing pipe also was decontaminated with a high pressure hot water wash prior to placing it into the well. The decontamination procedures were conducted in a low lying level area on the southwest edge of the paved area in the gravel. The area was of sufficient size to contain two rounds of decontamination. A large round trough was used to contain the water.

4.5 Waste Handling and Site Restoration

Investigation-derived waste was segregated according to waste type. The soil cuttings from the soil borings and monitoring wells were stored in open top 55-gallon steel drums. The soil cuttings from the installation of MW-3 were mixed with bentonite to absorb the water that was used in the drilling procedures. In MW-4, the well was drilled dry until bedrock was encountered at 32.5 feet, therefore the soil cuttings were dry and did not require solidification.

The make-up water used to drill bedrock in MW-3 and MW-4 was decanted off the bedrock chips and the water placed in separate 55-gallon steel drums. Upon completion of the field activities, the drums were sealed, labeled, and staged on a grass and partially paved area north and east of MW-3 for proper future disposal.

The drummed make-up water, purge water, and decontamination water accumulated during the field activities was processed through the wastewater pre-treatment system at the Modine facility. Once empty, the drums were triple rinsed and recycled for other use by Modine. The soil cuttings derived during the investigation are being properly disposed by Modine. A sample of the soil cuttings was collected from the drums for disposal purposes and the results are discussed in Section 5.0 of this report.

Soil borings advanced at the facility were backfilled from total depth to ground surface with bentonite chips. Borings located in paved areas were capped with concrete.

5.0 RESULTS

5.1 Laboratory Analytical Results

Laboratory analytical results for soil and groundwater samples are presented in Appendix B and are summarized in the following subsections and Tables 1,2, and 3.

5.1.1 Soil

Soil results are presented in ppm which can be considered to be equivalent to milligrams per kilogram (mg/kg) reported on an as-received basis for all parameters other than VOCs. VOCs are reported in ppb which is equivalent to micrograms per kilogram (ug/kg) reported on an as-received basis.

The results obtained for each of the soil samples are summarized in the following paragraphs:

Soil Excavation

• B-11 (composite sample 0 to 3'): This sample was collected for disposal profiling. The soil pH was 5.8 standard units (S.U.) indicating the soil is not corrosive. The paint filter test indicated no free liquids. The TCLP metals detected above the reporting limit include, barium at 0.56 milligrams per liter (mg/L) and lead at

0.068 mg/L. These metals concentrations in the leachate are well below the TCLP levels of 100 mg/l for barium and 5.0 mg/l for lead at which the soil would be defined as characteristically hazardous.

• Excavation Samples: The base and four walls were sampled and the following lead concentrations were detected above the reporting limit: north wall at 59.4 ppm, east wall at 45.9 ppm, west wall at 90.0 ppm, south wall at 57.6 ppm and the base at 87.7 ppm. These concentrations are below the background lead level of 238 ppm derived from a previous investigation.

Soil Borings

- B-13 (8.5 to 13'): The soil sample collected from soil boring B-13 at a depth of 8.5 feet to 13 feet bgs was collected along the former drain line on the west side of the building and exhibited a high field PID reading. The following VOC were reported at concentrations above the reporting limit: TCE at 204,000 ppb and tetrachloroethene (PCE) at 2,180 ppb.
- B-16 (6" to 4.5'): The soil sample collected from soil boring B-16 at a depth of 6 inches to 4.5 feet bgs exhibited a field PID reading of less than 1 ppm in isobutylene equivalents. The following VOC were reported at concentrations above the reporting limit: 1,1-dichloroethene at 10.9 ppb, TCE at 28.9 ppb, and methylene chloride at 29.0 ppb.
- B-17/MW-3 (4.5'): The soil sample collected from soil boring B-17 at a depth of 4.5 feet bgs exhibited a field PID reading of less than 1 ppm in isobutylene equivalents. The following VOC were reported in concentrations above the reporting limit: TCE at 3.5 ppb and methylene chloride at 13.0 ppb.

Drum Composite

• The only VOC detected above the reporting limit was methylene chloride at 23.8 ppb. The following total metals were detected above the reporting limit: arsenic

at 4.35 ppm, barium at 31.3 ppm, chromium at 4.5 ppm, cadmium at 0.372 ppm, and lead at 84.1 ppm.

5.1.2 Groundwater

Groundwater results are presented in ppb which is essentially equivalent to micrograms per liter (ug/l). The results obtained for each of the groundwater samples are summarized below:

Initial Sampling Event

- MW-1: The only VOC detected above the reporting limit was TCE at a concentration of 11.8 ppb.
- MW-2: No VOCs were detected above the reporting limit in the sample or duplicate sample collected from MW-2.
- MW-3: The only VOC detected above the reporting limit was TCE at a concentration of 8.0 ppb.
- MW-4: The only VOC detected above the reporting limit was TCE at a concentration of 88.9 ppb.

Quarterly Sampling Event

- MW-1: The only VOC detected above the reporting limit was TCE at a concentration of 9.4 ppb.
- MW-2: No VOCs were detected above the reporting limit.
- MW-3: No VOCs were detected above the reporting limit.
- MW-4: The only VOC detected above the reporting limit was TCE at a concentration of 142 ppb in the sample from MW-4 and a concentration of 154 ppb in the duplicate sample from MW-4.

5.1.3 Quality Assurance/Quality Control

Supporting quality assurance/quality control (QA/QC) received from the analytical laboratory consisted of method blanks for the metal and VOC analyses. Results were reported for water method blanks and soil method blanks for VOCs and soil method blanks for metals. The only VOC parameter that was detected in any of the soil method blank was methylene chloride at 10.2 ppb. No metals were detected in the soil method blanks.

The presence of methylene chloride, a common laboratory reagent, in the soil method blank makes the reported concentration of methylene chloride in the soil samples from B-16 and B-17/MW-3 suspect.

5.2 Geologic and Hydrologic Conditions

The soil samples collected from the borings indicated an underlying soil composed primarily of clays and chert. Chert fragments or bedrock remnants were encountered in all six of the borings at a depth ranging from approximately 4.5 to 13 feet bgs. Competent bedrock was encountered in the monitoring wells at a depth ranging from 32.5 feet to 55 feet bgs. Lithology varied slightly from boring to boring as illustrated in the boring logs presented in Appendix A.

Groundwater was gauged in the wells at depths ranging from approximately 147 to 161 feet bgs during the initial round of sampling. The levels dropped slightly in the second round of gauging conducted as part of the quarterly sampling in November. At this time depth to water ranged from 149 to 162 feet bgs. When groundwater elevations are calculated via standard triangulation for each event or averaged from both events, the same type of potentiometric surface map is produced. Groundwater appears to flow west-northwest with a trough from just north of MW-1 to MW-2 (Figure 3).

6.0 CONCLUSIONS

Conclusions with regard to soil, groundwater, and geological and hydrogeologic conditions at the site are the opinions of Modine and may not reflect the opinions of Sundstrand Corporation or other third parties.

6.1 Soil Analysis

Analysis of the soil samples collected from the excavation at the lead impacted area indicated that sufficient volume of soil was removed to adequately remediate the lead impact to soil.

Results from the analysis of the soil samples collected from the soil borings indicated that a VOC impact to soil exists along the storm water drain line. The TCE concentration in the subsurface soil sample from near the drain line exceeded 200,000 ppb. PCE and 1,1-dichloroethene also were present in some of the soil samples at concentrations well below applicable action levels.

Our effort to assess the extent of the VOC impact to site soil was not successful. Field indications based upon PID readings indicated no impact in borings B-16 and B-17; however, laboratory analytical results indicated TCE present in both samples. The TCE concentration of 3.5 ppb in the sample from B-17 was only slightly above background (1.6 ppb detection limit in Law report 8/93).

Methylene chloride was reportedly present in two of the three samples collected. Based upon the presence of methylene chloride in the method blank and the fact that methylene chloride is a common laboratory reagent, Dames & Moore believes that the reported methylene chloride concentration in the samples is due to laboratory introduction and is not actually present in the samples.

6.2 Groundwater Analysis

The groundwater samples collected were analyzed for full suite of VOCs. The only VOC present in the samples above the reporting levels was TCE at concentrations ranging from 8 ppb

to 154 ppb. During the initial sampling event TCE was detected above the 5.0 ppb reporting level in MW-1, MW-3, and MW-4 and during the quarterly sampling event TCE was detected above the reporting level in only MW-1 and MW-4.

6.3 Geologic and Hydrogeologic Interpretation

The soil samples collected from the borings indicated an underlying soil composed primarily of clays and chert. The abundant chert could create pathways of increased permeability within the clay. These preferential flow pathways would conduct infiltrating rainwater both laterally and vertically much more rapidly than would normally be expected in a clayey soil.

The groundwater movement through the dolomite bedrock is via secondary porosity such as fractures and solution channeling. As such, the potentiometric surface map presented as Figure 3 is likely inaccurate. Based upon the geology of the area, we believe that the measured groundwater elevations may be measurements of water levels in a fracture or jointing system that may be totally unrelated between wells. A possible groundwater scenario is presented in Figure 4, which illustrates groundwater flow direction in two distinct fracture systems. These systems may be related as perpendicular, intersecting channels or completely unrelated. Additional information maybe required to accurately assess the secondary porosity controlling groundwater movement at the site.

7.0 POTENTIAL FUTURE FOLLOW-UP WORK

Modine may, in a future work plan, undertake the following in order to adequately assess the secondary porosity system at the site and uncouple the TSD from the observed groundwater impact.

Field Fracture Survey

Valuable information could be obtained on fracture orientation by conducting a field survey of rock outcrops in the site vicinity. Based upon geologic literature, the potential exists that the underlying dolomite may outcrop in the valleys immediately north and west of the subject property. If so, the jointing or fracture system could be mapped by measuring strike and dip of

the joints observed. Determining dip would give the angle of slope of the joint system. Knowing angle of slope of the joint system will aid in the following: determining the direction of a potential source of the observed TCE contamination, assessing how quickly a contaminant may migrate vertically, assessing the potential for interconnection of the joints or fractures observed in the on-site wells, and aid in interpretation of the borehole logging results discussed in the next task.

Borehole Logging

Downhole geophysical logging of the monitoring wells at the site will be the most valuable tool in assessing fracture locations and dip. The suggested suite of logs will include: natural gamma, guard resistivity, density, caliper, neutron-neutron, SP, single point resistance, induction resistivity, and acoustic televiewer (also referred to as borehole televiewer and not to be confused with borehole television).

The most critical of this suite is the acoustic televiewer (ATV). The ATV can provide high-resolution information on the location and character of secondary porosity, such as fractures and solution openings. The ATV also can provide the strike and dip of a fracture or joint. A schematic three-dimensional view of a fracture intersecting a borehole and the appearance of the same fracture on an ATV log is presented as Figure 5. The ATV log would be sufficient if all the boreholes were uncased; however, the ATV does very poorly through PVC casing. Therefore, the remaining suite previously mentioned will be run on all the boreholes to aid in fracture assessment in the cased holes.

Packer Testing

Following completion of the borehole logging, packer tests will be conducted in the boreholes to better assess the interconnection of the on-site wells. The borehole logging will have identified jointing or fracture zones within the borehole. The purpose of a packer test is to isolate these zones and assess the water levels in each. A straddle-packer system consisting of two inflatable packers separated by a length of slotted PVC pipe will be utilized. One packer will be set above and one below the fracture zone, the water will be removed from between the packers and the return to static water level measured. By isolating and measuring the actual water level in each fracture zone an accurate water level per fracture zone can be determined. This data can

then be compared from borehole to borehole and an accurate estimate of interconnection can be assessed.

Groundwater sampling of each zone could also be conducted as part of the packer testing. Sampling would allow the acquisition of analytical data from each fracture zone and could potentially aid in defining through which zone or zones contaminants are migrating.

Geoprobe Sampling

Geoprobe advancement and sampling may be conducted to assess the TCE impact to soil at the TSD and the extent of the observed TCE impact to soil surrounding former boring B-13. The purpose of the sampling will be to uncouple the TSD from the observed TCE groundwater impact. If it can be proven that the TSD is not the source of the TCE impact at B-13 and unlikely the source of groundwater impact, MoDNR has indicated that they would then close the TSD. Subsequent investigations at the identified soil source (B-13) and the groundwater impact would then be investigated under Corrective Action or the Voluntary Program.

The Geoprobe unit will be equipped with an on-board Gas Chromatograph (GC) to obtain realtime results. Confirmatory samples will be submitted to the analytical laboratory at a rate of one sample per ten on-site GC readings (10% of the samples collected). This rate of confirmatory sampling was tentatively approved by MoDNR in our meeting of January 11, 1996.

8.0 REFERENCES

- Dames & Moore, 1995, Work Plan Modification for an Investigation to Achieve Final Closure of the Interim TSD Facility, prepared for Modine Manufacturing Company.
- Missouri Code of State Regulations, 1994, Title 19, Any-Use Soil Levels for Residential Settings. 19 CSR 20-9.020.
- Personnel communication between Dames & Moore and Mr. Brian Peterson with Century Geophysical Corp. of Tulsa, Oklahoma.
- U.S. Environmental Protection Agency, Office of Water, 1994, Drinking Water Regulations and Health Advisories.
- Vineyard, Jerry D. and Feder, Gerald L. Springs of Missouri, Water Resources Report No. 29, 1982. Missouri Department of natural Resources, Division of Geology and Land Survey in cooperation with the U.S. Geological Survey and Missouri Department of Conservation.
- Whitfield, John W. Surficial Geology of the Green Bay Terrace Quadrangle, Lake of the Ozarks Area, Missouri, OFM 84-174-GI, 1984. Missouri Department of natural Resources, Division of Geology and Land Survey.

TABLES

TABLE 1

EXCAVATION DISPOSAL PROFILING COMPOSITE SOIL SAMPLE MODINE HEAT TRANSFER, INC. CAMDENTON, MISSOURI

(Results presented in milligrams per liter (ug/L))

Sample ID Barium Lead Corrosivity pH Paint Filter						
B-11 (0-3')	0.56	0.068	5.8*	No Free Liquids		

^{* -} pH value in standard units

EXCAVATION SOIL ANALYTICAL RESULTS MODINE HEAT TRANSFER, INC. CAMDENTON, MISSOURI

(Results presented in part per million (ppm))

Sample ID	Lead
North Wall	59.4
East Wall	45.9
West Wall	90.0
South Wall	57.6
Base	87.7

TABLE 2

SOIL BORING ANALYTICAL RESULTS MODINE HEAT TRANSFER, INC. CAMDENTON, MISSOURI

(Results presented in parts per billion (ppb) unless noted)

Sample Ide	VOC Constituent				
Soil Boring	Depth (feet)	TCE	PCE	1,1- Dichloroethene	Methylene Chloride
B-13	8.5-13	204,000	2,180	ND	ND
B-16	6"-4.5	28.9	ND	10.9	29.0 B
B-17	4.5	3.5	ND	ND	13.0 B

B - Detected in the method blank

ND - Not Detected at or above the reporting limit

TABLE 3

GROUNDWATER ANALYTICAL RESULTS MODINE HEAT TRANSFER, INC. CAMDENTON, MISSOURI

(Results presented in parts per billion (ppb) unless noted)

Sample ID	Date	TCE**
MW-1	8/16/95	11.8
MW-2	8/22/95	ND
Dup-1 (MW-2)	8/22/95	ND
MW-3	8/22/95	8.0
MW-4	8/22/95	88.9
MW-1	11/15/95	9.4
MW-2	11/15/95	ND
MW-3	11/15/95	ND
MW-4	11/15/95	142
Dup-1 (MW-4)	11/15/95	154

ND - Not Detected at or above the reporting limit

^{** -} All other VOC parameters not detected above reporting levels

TABLE 4

WELL COMPLETION DATA MODINE HEAT TRANSFER, INC. CAMDENTON, MISSOURI

Monitoring Well ID	Date Installed	Water Level Depth - Date Recorded	Casing Material	Casing Diameter	Depth to Screen	Screened Interval	TOC Elevation	Total Depth
MW-1	7/92	148.35' - 8/22/95 149.07' - 11/15/95	PVC	2"	NR	NR	186.61'	161'
MW-2	7/92	160.52' - 8/22/95 161.45' - 11/15/95	PVC	2"	NR	NR	204.26'	197'
MW-3	8/9/95	147.71' - 8/22/95 149.52' - 11/15/95	Steel Surface Casing to 63'; Open Hole 63' to 167'	5"* 4-3/4"	None	Open Hole 63' to 167'	193.74'	167'
MW-4	8/11/95	149.18' - 8/22/95 150.63 - 11/15/95	Steel Surface Casing to 43'; Open Hole 43' to 158'	5"* 4-3/4"	None	Open Hole 43' to 158'	192.24'	158'

NR

- No Reported

- Surface Casing Diameter

FIGURES

Figure 2: Soil Boring and Monitoring Well Locations

Modine Heat Transfer, Inc. Camdenton, Missouri

Approximate Scale 1"=130'

Figure 3: Calculated Groundwater Contour Map

mw-1		
186.61 - 148.35	38.26	
186.61 - 149.07	37.54	
mw-Z 204.26 - 160.52	43.74	
204.26 - 161.45	42.81	
mw-3 193.74-147.71	46.03	
193.74 - 149.52	44.22	
mw-4		
192.24-149.18	43.06	
192.24 - 150.63	41,61	
		ou

Approximate Scale 1" = 130'

Figure 4: Possible Groundwater Contour Map

Figure 5 THREE DIMENSIONAL VIEW OF A FRACTURE AND ASSOCIATED ATV LOG

Modine Heat Transfer, Inc. Camdenton, Missouri

DAMES & MOORE, INC.

APPENDIX A SOIL BORING AND MONITORING WELL LOGS

Client: Modine Heat Transfer, Inc.		S	OIL BO	RIN	G ID B-1	2		-	
Project Number: 27397-005	Mon	itoring	g Well D	ata:	Elevation:				
Project: RCRA TSD Facility Closure	Pip	oe:			Datum:				
Location: Camdenton, MO	Scree	en:			Ground Surface:				
Driller: Layne-Western Kansas City	Slo	ot:			Measuring Pt:				
Borehole Logged By: Miesche Francis	Sa	nd:			Top of (_			
Drilling Method: Hollow Stem Auger			Sai	nple 7					
Date Installed: August 7, 1995		CΓ - Cutti	ıgs	•	CC - Contin				
Surface Conditions: Concrete/Asphalt		SS - Split S WA - Was	Spoon h Sample		RX - Rock (ST - Shelby				
							Sample		
DESCRIPTION	USCS	Stratigraphy	Depth (ft.)	OVM (ppm)	Completion	Lab	Interval	Type	
0 -6" Concrete			0			v			
6" - 4 1/2' CLAY, red, with gravel to a gray clay at approximately	CL		1	18.0	GROUT	N	6"-4.5	СС	
4' 4". 2' of recovery.			2		GR				
			3		TE.		-		
4 1/2' - 6 CLAY, gray, with gravel and slight odor. 1' of recovery.	CL		4	40.1	BENTONITE	N	4.5-6	CC	
Total Depth - 6' at auger refusal.			- ₅ -	10.1	Z	14	7.5-0		
Total Depth - o at auger refusal.			- 6						
· ·									
			7 -						
			8						
			9						
			10						
			11 -						
			12						
			_						
			13						
			14						
			15						
			16						
			- ₁₇ -						
			L _						
	29		18						
			19						
			20						
			- ₂₁ -						
			22						
			23						
			24						
			25						
		L			<u> </u>				

Client: Modine Heat Transfer, Inc.		S	OIL BO	RIN	G ID B-1	3			
Project Number: 27397-005	Mon	itoring	g Well D	ata:	Elevation:				
Project: RCRA TSD Facility Closure	Pip	e:			Datum:				
Location: Camdenton, MO	Scree	en:			Ground Surface:				
Driller: Layne-Western Kansas City	Slo	ot:			Measuring Pt:				
Borehole Logged By: Miesche Francis	Sai	nd:			Top of C	Casing	ŗ.		
Drilling Method: Hollow Stem Auger			Sai	nple					
Date Installed: August 7, 1995		T - Cutti	ıgs	•	CC - Contine				
Surface Conditions: Concrete		SS - Split S WA - Was	Spoon h Sample		RX - Rock C ST - Shelby				
							Sample		
		hy	$\overline{}$	(m	u c				
DESCRIPTION		rap	Depth (ft.)	OVM (ppm)	eti		=		
	USCS	atig	pth	Ξ	du		N SYL	l a	
	NS	Stratigraphy	DeJ	0	Completion	Lab	Interval	Туре	
0 -6" Concrete			0						
6" - 4 1/2' CLAY, red, with gravel, slight septic odor, dry. 1 1/2' of	CL		1	82.3		N	6"-4.5	cc	
	CL		2	62.3		111	0 -4.5		
recovery.									
			3						
4 1/2' - 8 1/2' CLAY, red, with gravel, slight septic odor, dry to gray	CL		4	403	10	N	1505	CC	
	CL			403	GROUT	IN	4.5-8.5		
clay at approximatley 7'. 2 1/2' of recovery.			5		<u> </u>				
			6		E E				
			7 -	1	Z				
					BENTONIT				
8 1/2' - 13' CLAY, red, with gravel, some areas of gray clay,	CL		8	787	SEN	Y	8.5-13	CC	
strong septic odor, very moist,			9						
g =			10	1					
			11						
Total Depth - 13' at auger refusal.			12	1					
Total Depth - 13 at auger refusar.			- ₁₃ -						
	в.		14						
			15	1					
*				-					
*			16						
			17						
			18						
			19						
			20						
			21						
							2		
			22		"				
			23						
			- ₂₄ -						
			25						

Client: Modine Heat Transfer, Inc.		S	OIL BO	RIN	G ID B-1	4		
Project Number: 27397-005	Mon	itoring	Well D	ata:	Elevatio	n:		
Project: RCRA TSD Facility Closure	Pip	oe:		Datum:				
Location: Camdenton, MO	Scree	en:		Ground Surface:				
Driller: Layne-Western Kansas City	Slo	ot:			Measuring Pt:			
Borehole Logged By: Miesche Francis	Sa	nd:			Top of C			
Drilling Method: Hollow Stem Auger			Sai	nple 7				
Date Installed: August 7, 1995		CT - Cutti	igs	•	CC - Contin			
Surface Conditions: Gravel		SS - Split S WA - Was	h Sample		RX - Rock C ST - Shelby			
							Sample	:
DESCRIPTION	USCS	Stratigraphy	Depth (ft.)	OVM (ppm)	Completion	Lab	Interval	Type
0 -6" Gravel			0					
6" - 4' CLAY, brown to gray, with gravel, moist. 1 1/2' of recovery.	CL		1 2 3	8.9	VITE GROUT	N	6"-4'	СС
Total Depth - 4 1/2 ' at auger refusal.			4 - 5 - 6 		BENTONITE	U		
			7 - 8 					
			9 - 10 - 11 -					
			11 - 12 - 13					
			14 14 15					
			16 17		ï			
			18 - 19					
			20 - 21 -					0
			22 - 23 -					
			24 - 25					

Client: Modine Heat Transfer, Inc.	\neg	S	OIL BO	RIN	G ID B-1	.5				
Project Number: 27397-005	Mon		g Well D			Elevation:				
Project: RCRA TSD Facility Closure	Pip				Datum:					
Location: Camdenton, MO	Scre	en:			Ground Surface:					
Driller: Layne-Western Kansas City	Slo	ot:			Measuring Pt:					
Borehole Logged By: Miesche Francis	Sa	nd:			Top of C	Casing	j.			
Drilling Method: Hollow Stem Auger			Sar	nple 7	Гуре					
Date Installed: August 7, 1995		CT - Cutti SS - Split :			CC - Contin RX - Rock (
Surface Conditions: Gravel			h Sample	т —	ST - Shelby	Tube				
		>					Sample	; T		
DESCRIPTION	USCS	Stratigraphy	Depth (ft.)	OVM (ppm)	Completion	Lab	Interval	Type		
0 -3' No Recovery.			0		Ü					
3'- 4' Gravel to clay, red, with gravel, dry at 3' 6" to asphalt at 3' 8". 4'-4 1/2' CLAY, red, with gravel, dry. 4 1/2' - 7 1/2' CLAY, red, with silt and gravel, very moist. Total Depth - 7 1/2' at auger refusal.	CL		1 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24	1.3 16.3	BENTONITE GROUT	N N	3-4' 4-4.5' 4.5-7.	CC CC		
New This hand to the state of t			25							

Client: Modine Heat Transfer, Inc.	SOIL BORING ID B-16								
Project Number: 27397-005	Mon		Well D		a: Elevation: Datum:				
Project: RCRA TSD Facility Closure		Pipe:							
Location: Camdenton, MO				1					
Driller: Layne-Western Kansas City	Slo	ot:			Ground Surface: Measuring Pt:				
Borehole Logged By: Miesche Francis	Sa	nd:			Top of C				
Drilling Method: Hollow Stem Auger			Sai	nple 7					
Date Installed: August 7, 1995		CT - Cuttin SS - Split S			CC - Contin				
Surface Conditions: Grass		WA - Wasi			RX - Rock (ST - Shelby				
							Sample		
DESCRIPTION	USCS	Stratigraphy	Depth (ft.)	OVM (ppm)	Completion	Lab	Interval	Type	
0 -6" Grassy Top Soil			0						
6" - 4 1/2' CLAY, gray, with gravel, very soft, moist,	CL		1	0.5	GROUT	Y	6"-4.5"	cc	
slight septic odor. 1' of recovery.			2		GR				
			3		크				
Total Depth - 4 1/2 ' at auger refusal.	- 1		4 -		BENTONITE				
Total Depth - 4 1/2 at auger fetusal.				-					
			5 -		BEI				
	1		6						
			7 -						
			- ₈ -	-					
			9		2				
			10	1					
			- ₁₁ -	1					
			12						
			13	1					
			- 14			ĺ			
			14						
			15						
			16		×				
			17						
			18						
			19	1					
			- ₂₀ -	l					
	l								
			21						
			22		7				
			- 23 -						
			24		2				
								1	

Client: Modine Heat Transfer, Inc.		S	OIL BO	RIN	G ID B-1	7				
Project Number: 27397-005	Mon	itoring	Well D	ata:	Elevatio	evation:				
Project: RCRA TSD Facility Closure	Pip				Datum:					
Location: Camdenton, MO	Scre	en:			Ground Surface:					
Driller: Layne-Western Kansas City	Slo	ot:			Measuring Pt:					
Borehole Logged By: Miesche Francis	Sa	nd:			Top of C	_				
Drilling Method: Hollow Stem Auger			Sar	nple 7						
Date Installed: August 7, 1995		CT - Cuttin	ıgs	•	CC - Contin					
Surface Conditions: Grass		SS - Split S WA - Was			RX - Rock C ST - Shelby					
							Sample			
		Stratigraphy	. ;	OVM (ppm)	Completion					
DESCRIPTION	S	gra	h (f	(b)	let		/al			
e e	USCS	rati	Depth (ft.)	N N	l luc	Lab	Interval	Type		
	<u> </u>	St	0	0	Ŭ	Le	In	T.		
0 -6" Grassy Top Soil										
6" - 4 1/2' CLAY, red, with gravel and chert, dry. 1' of recovery.	CL		1 -	0.3		N	6"-4.5'	CC		
			2	9						
			3	1	5	1871				
4 1/2'-8 1/2' Same as above grading to mois, to Silt, black with	CL		4 -	0.5	GROUT	Y	4.5-8.5	СС		
			- ₅ -	0.5	 	1	4.5-6.5			
gravel, very hard at 7 1/2 '.				ł	BENTONITE					
			6		No.					
	ML		7		N L					
8 1/2' - 12' CLAY, red, with cherty gravel, moist, to approximately 1"	CL		8	0.3	BH	N	8.5-12	СС		
of grey silty clay with gravel at the base.			9	1						
			10	1						
			- ₁₁ -	1						
Total Depth - 12' at auger refusal.										
			12							
ė.			13							
			14							
			15							
, and the second			16							
			17							
			- 18							
			19							
			20							
			21					ja		
			22							
			23							
			- ₂₄ -							
			25							
		L								

Client: Modine Heat Transfer, Inc.	T -	MONI	TORIN	IG W	ELL ID	MW-1	3		
Project Number: 27397-005			Well D		Elevation				
Project: RCRA TSD Facility Closure			dia to		Datum:	J11.			
Location: Camdenton, MO	Scre		None	33	Ground	Surfac	20. C	2 001	
Driller: Layne-Western St. Louis					1				
Borehole Logged By: Miesche Francis					Measuring Pt:			274	
Drilling Method: Air Rotary	Sand: None				Top of Casing: 93.74'				
Date Installed: August 8-9, 1995		Sample CT - Cuttings			. ype CC - Conti				
Surface Conditions: Grass		SS - Split S	poon		RX - Rock				
Surface Conditions. Grass		WA - Was	h Sample	г —	ST - Shelby		~ .		
			000000			-	Sample	-	
DESCRIPTION	USCS	Stratigraphy	Depth (ft.)	OVM (ppm)	Completion	Lab	Interval	Type	
0 - 15' CLAY, red, with abundant cherty gravel, fill.	CL		0	0			I	H	
15 - 23' CLAY, red, with abundant chert. 23 - 28' Same as above with sand in part.	CL		1		ER STEEL CASING				
28-43' Same as above including brown color with some chalky chert at approximately 40 feet.	CL		26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 38		6" DIAMETER				
43 - 55' Same as above.	CL		38 - 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46						

MONITORING WELL MAY 2 (CONTEN			
MONITORING WELL MW-3 (CON'T)	47		
	47 48		
	49		
	50	NIS	
	51	CASING	
	52 - 53	E000001 1000001 1	
	54	STEEL	
55' Competent bedrock, dolomite and chert. Set casing 55 to 63 feet.	55		
	56	ETI	
	57 - 58	6" DIAMETER	
	59		
	60	9	
	- 61		
	62 - 63		
	64		
55 - 90' Dolomite, brown to off-white, with some gray at 70'.	65		
	- 66 -		
*	- 67 68		
	69		
	70		
	71 -		
e ·	72 73		
	74		
	75		
	76		
	77 - 78 -	NOIL	
	79		
	80	COMPLE	
	81		
	82 - 83 -		
	84	오	
	85	OPEN HOLE	
	86		
	87 - 88		
	89		
0 - 100' Dolomite, gray.	90		
	91		
	92 - 93		
	94		
	95		
	96		
	97		
	98 99		
00 - 110' Dolomite, brown to tan with some chert.	100		

MONITORING WELL MW 2 (CONTY)		
MONITORING WELL MW-3 (CON'T)	101	
110 - 140' Dolomite, brown to grey, with chert.	101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129	DLE COMPLETION
140 - 155' Dolomite, brown.	130	OPEN HOLE
148 - 152' Fracture Zone according to driller.	141	

MONITORING WELL MW-3 (CON'T)	
Total Depth 170'.	155 156 157 158 159 160 161 162 163 164 165 166 167 166 167 168 169 170

Client: Modine Heat Transfer, Inc.	T -	MON	ITORIN	IG W	ELL ID	MW-	4	
Project Number: 27397-005			g Well D		Elevation		•	
Project: RCRA TSD Facility Closure					Datum:			
Location: Camdenton, MO	Pipe: 6" dia to 43' Screen: None				Lane			93.10'
Driller: Layne-Western St. Louis	Slo		None		Measur			93.10
Borehole Logged By: Miesche Francis		nd:			1			00.04
Drilling Method: Air Rotary	Sa	iiu.	None	1 7	Top of	Casing	5: 5	92.24'
Date Installed: August 11, 1995		CT - Cutti		mple 7	• •			
1		SS - Split S			CC - Conti RX - Rock			
Surface Conditions: Asphalt		WA - Was	h Sample		ST - Shelby			
					Ì		Sample	e
DESCRIPTION	USCS	Stratigraphy	Depth (ft.)	OVM (ppm)	Completion	Lab	Interval	Туре
0 - 15' CLAY, red, with cherty gravel and coarse sand, moist.	CL	S	0	0			1	1
graver and course state, moist.	CL			1				
			1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10					
15 - 16' CLAY, red, with cherty gravel and fine to corse sand, moist. 16 - 20' SAND, brown, fine grained, with clay and trace gravel.	CL SC		11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 -		CASING			
20 - 25' CLAY, red, with abundant chert.	CL		19 - 20 - 21 - 22 - 23 - 24		ETER STEEL			
25 - 30' Broken up chert and dolomite are present.			25 _ 26 _ 27 _ 28 _ 29 _		6" DIAMETER			
30 - 32.5 'SAND, red, fine grained, with clay and cherty gravel.	SC		30 <u> </u>					
32.5' Compotent bedrock set casing 32.5' to 43'.			- 32 - 33 - 34					
35 - 40' Chert and dolomite, tan.			34 - 35 - 36 - 37 - 38 -					
40 - 43' Chert and dolomite with some shale.			- ³⁹ - - ⁴⁰ - - ⁴¹ -					
43 - 50' Dolomite, brown.			- 43 - - 44 - - 45 - 46		O. H. C.			

MONITORING WELL MW-4 (CON'T)	I 4 (CONIT)	
1		
55 - 60° Chert, with open space textures (quartz on chert). 55 - 60° Chert, with open space textures (quartz on chert). 55 - 56 57 58 58 59 60 61 62 62 63 64 65 66 67 68 69 70 71 72 73 74 74 75 75 76 76 77 77 78 79 80 80 81 80 81	1 ####################################	
55 - 60° Chert, with open space textures (quartz on chert). 55 - 60° Chert, with open space textures (quartz on chert). 55 - 53 - 54 - 55 - 56 - 57 - 58 - 58 - 59 - 60 - 61 - 62 - 62 - 63 - 64 - 65 - 70° Dolomite, brown, with trace amounts of chert. 65 - 70° Dolomite, brown, with trace amounts of chert. 70 - 75° Dolomite, grey to brown 70 - 75° Dolomite, grey to brown, with chert.	1 ######### I I I I I	
55 - 60' Chert, with open space textures (quartz on chert). 55 - 60' Chert, with open space textures (quartz on chert). 55 - 60' Chert, with open space textures (quartz on chert). 55 - 60' Chert, with open space textures (quartz on chert). 56 - 56 - 57 - 58 - 56 - 57 - 58 - 56 - 57 - 58 - 58 - 59 - 50 - 50 - 50 - 50 - 50 - 50 - 50	50]	
55 - 60° Chert, with open space textures (quartz on chert). 55 - 60° Chert, with open space textures (quartz on chert). 55 - 60° Chert, with open space textures (quartz on chert). 55 - 56 56 57 58 59 60 61 62 62 63 64 65 66 62 63 64 65 66 67 68 69 68 69 60 67 68 69 60 67 68 69 60 67 68 69 69 60 60 60 60 60 60	I ######## → I I I I I	
55 - 60° Chert, with open space textures (quartz on chert). 55 - 60° Chert, with open space textures (quartz on chert). 55 - 60° Chert, with open space textures (quartz on chert). 55 - 60° Chert, with open space textures (quartz on chert). 56 - 56 - 56 - 56 - 56 - 56 - 56 - 56		
55 - 60° Chert, with open space textures (quartz on chert). 55	I ########## → I I I I I	
60 - 65' Dolomite, brown with abundant chert. 60 - 65' Dolomite, brown with abundant chert. 65 - 70' Dolomite, brown, with trace amounts of chert. 65 - 70' Dolomite, grey to brown 70 - 75' Dolomite, grey to brown 75 - 85' Dolomite, grey to brown, with chert.		
60 - 65' Dolomite, brown with abundant chert. 60 - 65' Dolomite, brown with abundant chert. 65 - 70' Dolomite, brown, with trace amounts of chert. 65 - 70' Dolomite, grey to brown 70 - 75' Dolomite, grey to brown 75 - 85' Dolomite, grey to brown, with chert.	1 HIIIII 1 1 1 1 1	
60 - 65' Dolomite, brown with abundant chert. 65 - 70' Dolomite, brown, with trace amounts of chert. 65 - 70' Dolomite, brown, with trace amounts of chert. 67 - 68 - 69 - 69 - 69 - 69 - 69 - 69 - 69		
60 - 65' Dolomite, brown with abundant chert. 65 - 70' Dolomite, brown, with trace amounts of chert. 65 - 70' Dolomite, brown, with trace amounts of chert. 70 - 75' Dolomite, grey to brown 75 - 85' Dolomite, grey to brown, with chert.	58]	
65 - 70' Dolomite, brown, with trace amounts of chert. 65 - 70' Dolomite, grey to brown 70 - 75' Dolomite, grey to brown 75 - 85' Dolomite, grey to brown, with chert.	· · · · · · · · · · · · · · · · · · ·	
65 - 70' Dolomite, brown, with trace amounts of chert. 62	I ######## →	
65 - 70' Dolomite, brown, with trace amounts of chert. 70 - 75' Dolomite, grey to brown 75 - 85' Dolomite, grey to brown, with chert. 75 - 85' Dolomite, grey to brown, with chert.		
65 - 70' Dolomite, brown, with trace amounts of chert. 70 - 75' Dolomite, grey to brown 75 - 85' Dolomite, grey to brown, with chert.		
65 - 70' Dolomite, brown, with trace amounts of chert.		
70 - 75' Dolomite, grey to brown 70 - 85' Dolomite, grey to brown, with chert. 75 - 85' Dolomite, grey to brown, with chert.	I ######## → I I I	
70 - 75' Dolomite, grey to brown 70 - 75' Dolomite, grey to brown, with chert. 75 - 85' Dolomite, grey to brown, with chert.		
70 - 75' Dolomite, grey to brown 75 - 85' Dolomite, grey to brown, with chert. 75 - 85' Dolomite, grey to brown, with chert.	67]	
70 - 75' Dolomite, grey to brown 70 - 75' Dolomite, grey to brown, with chert. 71 - 72 - 73 - 74 - 74 - 75 - 76 - 77 - 78 - 78 - 79 - 80 - 80 - 81 - 81 - 81 - 81 - 81 - 81	1 #####################################	
75 - 85' Dolomite, grey to brown, with chert.		
75 - 85' Dolomite, grey to brown, with chert.		
75 - 85' Dolomite, grey to brown, with chert.		
75 - 85' Dolomite, grey to brown, with chert. 74	$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	
75 - 85' Dolomite, grey to brown, with chert.		
- 77 - 78 - 78 - 79 - 80 - 80 - 81 - 81 - 81 - 81 - 81 - 81	rown, with chert.	
	I ####################################	
	I BIIIIIIII I I I I I I	
	I #::::::::::::::::::::::::::::::::::::	
	84 7	
85 - 90' Dolomite grey to tan.	n. 85]	
88' Delemite brown with some and	· · · · · · · · · · · · · · · · · · ·	
88' Dolomite, brown, with some sand.	####################################	
90 - 95' Dolomite, grey.		
	I B::::::::::::	
	1 ####################################	
05 115l Delawite house	I ####################################	
95 - 115' Dolomite, brown.	I ####################################	
		3

MONITORING WELL MW-4 (CON'T)	
115 - 120' Dolomite, brown to grey. 120 - 145' Dolomite, with grey chert.	101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 130 131 14 15 17 18 19 10 10 117 118 119 120 121 122 123 124 125 126 127 128 129 130 140 170 181 191 100 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 127 128 129 130 130 140 170 180 190 190 190 190 190 190 190 19
145 - 158' Chert, gray.	132 133 134 135 136 137 138 139 140 141 142 143 144 145 145 146 147 148 149 150 151 152 153 154 154

MONITORING WELL MW-4 (CON'T)	
Total Depth 158'.	155 156 157 158 158

APPENDIX B LABORATORY ANALYTICAL RESULTS

AMERICAN TECHNICAL & ANALYTICAL SERVICES, INC.

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 • FAX (314) 434-0080

DAMES & MOORE
AUG 1 4 1995

August 9, 1995

SPRINGFIELD, MO

Dan Price Dames & Moore 2135 East Sunshine Springfield, MO 65804

RE: ATAS #13633.01

#27397-005 - Modine TSD

Dear Mr. Price:

Enclosed is the analytical report for the sample received in our laboratory on August 3, 1995.

If, in your review, you should have any questions or require additional information, please call.

Thank you for choosing ATAS for your analytical needs.

Sincerely,

Jeffrey A. Carr Project Manager

Enclosures

JAC/sdp

1745 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

REPORT: 1363301MT(231)

DATE: 08-09-95

CLIENT: DAMES & MOORE

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804

ATTN: DAN PRICE

SAMPLE MATRIX : SOIL

ATAS # : 13633.01 DATE SUBMITTED: 08-03-95

DATE EXTRACTED: 08-03-95

PROJECT : #27397-005 - MODINE TSD SAMPLE ID : B-11 0'-3'

PARAMETER	REPORTING LIMIT	UNITS	RESULTS	DATE ANALYZED	METHOD REFERENCE	
,		INOI	RGANICS			
CORROSIVITY pH	S	S.U.@25c	5.8	08-03-95	EPA 150.1	
PAINT FILTER		NO FREE	LIQUIDS	08-03-95	SW 9095	
	n V	TCLP TOX	ICITY METAI	ıS	•	
ARSENIC BARIUM CADMIUM CHROMIUM LEAD SILVER SELENIUM MERCURY	0.100 0.005 0.004 0.005 0.040 0.010 0.100 0.0015	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	ND 0.56 ND ND 0.068 ND ND	08-08-95 08-08-95 08-08-95 08-08-95 08-08-95 08-08-95 08-07-95	SW 6010 SW 6010 SW 6010 SW 6010 SW 6010 SW 6010 SW 7470	

mg/L = PARTS PER MILLION(PPM)

ND = NOT DETECTED ABOVE REPORTING LIMIT

ATAS 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

REPORT:

DATE : 08-09-95

1363301MT(231)

CLIENT: DAMES & MOORE

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804

ATTN: DAN PRICE

SAMPLE MATRIX : TCLP LEACHATE

ATAS # : TCLP BLANK

DATE SUBMITTED: 08-03-95 DATE EXTRACTED: 08-03-95

PROJECT : #27397-005 - MODINE TSD SAMPLE ID : TCLP BLANK

PARAMETER	REPORTING LIMIT	UNITS	RESULTS	DATE ANALYZED	METHOD REFERENCE
		×		•	
	,	TCLP TOX	CICITY METAL	s S	
ARSENIC	0.100	mg/L	ND	08-08-95	SW 6010
BARIUM	0.005	mg/L	ND	08-08-95	SW 6010
CADMIUM	0.004	mg/L	ND	08-08-95	SW 6010
CHROMIUM	0.005	mg/L	ND	08-08-95	SW 6010
LEAD	0.040	mg/L	ND	08-08-95	SW 6010
SILVER	0.010	mg/L	ND	08-08-95	SW 6010
SELENIUM	0.100	mg/L	ND	08-08-95	SW 6010
MERCURY	0.0015	mg/L	ND	08-07-95	SW 7470

mg/L = PARTS PER MILLION(PPM)

ND = NOT DETECTED ABOVE REPORTING LIMIT

1715 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT: DAMES & MOORE

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804

ATTN: DAN PRICE

REPORT:

1363301MT(231)

DATE : 08-09-95

QA/QC

DESCRIPTION		PARAMETER	RESULTS
METHOD BLANK	08-08-95 08-08-95 08-08-95 08-08-95 08-08-95 08-08-95 08-08-95	ARSENIC BARIUM CADMIUM CHROMIUM LEAD SILVER SELENIUM MERCURY	<0.100 mg/L <0.005 mg/L <0.004 mg/L <0.005 mg/L <0.04 mg/L <0.01 mg/L <0.10 mg/L <0.002 mg/L
BLANK SPIKE	08-08-95 08-08-95 08-08-95 08-08-95 08-08-95 08-08-95 08-07-95	ARSENIC BARIUM CADMIUM CHROMIUM LEAD SILVER SELENIUM MERCURY	100 % RECOVERY 100 % RECOVERY 110 % RECOVERY 100 % RECOVERY 104 % RECOVERY 104 % RECOVERY 105 % RECOVERY 94 % RECOVERY

AMERICAN TECHNICAL & ANALYTICAL SERVICES, Inc. 875 Fee Fee Road • Maryland Heights, MO 63043-3211 • Office (314) 434-4570 • FAX (314) 434-0080

PAGE OF

CHAIN OF CUSTODY RECORD

DAMES 8	÷ Moo	RE				of Containers	Туре	of Ana	lysis	4	2 X	5/	XX X			Preservative Ice Chemical (see below)	Lab Use Only
Project Name	SD	Project #	17-00	5		ntaii					5/5	A>	1				Initials
Form Completed By			PO#	<u>ر</u>		ပ္နိ		6	1				/ /	/ /	/ /		Date
Miesche F	rance		0	<u>, </u>	Τ .	0.			\X	75	5/	/ ,	/ ,	/ ,	/ ,		8-3-95
Sample ID	Sample Date	Sample Time	Sample Matrix	Grab	Comp	S	/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	976	301						Remarks	Location/Temp
B-11 0'-3'	8-2-95	1018	Soil		X	İ										5 day turn	13633.01
-																around	
4										Þ							10 10 10 10 10 10 10 10 10 10 10 10 10 1
						¥1											
																3	
						1											
			-	T													
				\vdash													
		14		\vdash													
Relinquished by	y:	Rec	L ceived by/)	<u> </u>		L F	<u> </u> Relinqui	shed by	/:			Re	ceived	by:		Turnaround Requir	ements
-		7.1h	menter	~												1 to 2 workir	ng days
Signature	1	Signature	1		Sign	ature	- 1				Signat	ure				3 working da	nys
Adesche	arance	DL.MA	SENBE	4												5 working da	ıys
Printed Name		Printed Name	е		Print	ted Name	9				Printed	Name	2			10 working o	lavs
Firm	anas	ATAS			Firm	***************************************					Firm						
N 1. 1	00RE	1 1	0918		""						"""					15 working d Preservative codes	ays
Date/Time 0 2 0 F	7	Date/Time	0 (16		Date	/Time					Date/T	ime				A - none B - HNO3	
SEND RESULT	/ 1500 IS TO (Name	& Company):	DAN	P	D10	F	7	A	MF	5	É N	m	RF	•		C - H2SO4 D - NaOH	
		-) /				-le		211	100			w		•		E - HCI	
			Origi	nai to A	AS/Cop	by to Client										F	

AMERICAN TECHNICAL & ANALYTICAL SERVICES, INC.

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 • FAX (314) 434-0080

August 18, 1995

DAMES & MOORE AUG 2 3 1995

SPRINGFIELD, MO

Dan Price Dames & Moore 1675-L East Seminole Springfield, MO 65804

RE: ATAS #13708.01-#13708.06

Modine

Dear Mr. Price:

Enclosed are the analytical reports for the samples received in our laboratory on August 16, 1995.

If, in your review, you should have any questions or require additional information, please call.

Thank you for choosing ATAS for your analytical needs.

Sincerely,

Jeffrey A. Carr Project Manager

Enclosures

JAC/pck

▲ 114 875 Fee Fee Road ● Maryland Heights, MO 63043 ● (314) 434-4570 - FAX (314) 434-0080

CLIENT: DAMES & MOORE

1675-L EAST SEMINOLE

SPRINGFIELD, MO 65804

ATTN: DAN PRICE

REPORT: 13708PB(221)

DATE : 08-18-95

SAMPLE MATRIX : ATAS EPISODE : #13708 DATE SUBMITTED: 08-16-95 DATE ANALYZED: 08-17-95 PROJECT : MODINE METHOD REF. : SW 6010

RESULTS REPORTED IN mg/Kg OR PARTS PER MILLION(PPM)

LEAD

CLIENT ID	ATAS ID	REPORTING LIMIT	RESULTS
NORTH WALL EAST WALL WEST WALL SOUTH WALL BOTTOM	13708.01 13708.02 13708.03 13708.04 13708.05	4.0 4.0 4.0 4.0	59.4 45.9 90.0 57.6 87.7

1746 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT:

DAMES & MOORE

1675-L EAST SEMINOLE

SPRINGFIELD, MO 65804

ATTN: DAN PRICE

REPORT:

13708PB(221)

DATE : 08-18-95

SAMPLE MATRIX :

ATAS EPISODE :

#13708

DATE SUBMITTED: 08-16-95

DATE ANALYZED: 08-17-95

PROJECT

: MODINE

METHOD REF.

: SW 6010

RESULTS REPORTED IN ug/L OR PARTS PER BILLION(PPB)

LEAD

 CLIENT ID	ATAS ID	REPORTING LIMIT	RESULTS
EB-1	13708.06	3.0	ND

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT:

DAMES & MOORE

1675-L EAST SEMINOLE SPRINGFIELD, MO 65804

ATTN: DAN PRICE

REPORT: QC817PB(221)

DATE : 08-18-95

QA/QC

DESCRIPTION		PARAMETER	RESULTS	
METHOD BLANK METHOD BLANK	08-17-95 08-17-95	LEAD	<4.0 <3.0	mg/Kg ug/L
BLANK SPIKE BLANK SPIKE	08-17-95 08-17-95	LEAD LEAD	90 % 100 %	RECOVERY RECOVERY

AMERICAN TECHNICAL & ANALYTICAL SERVICES, Inc. 875 Fee Fee Road • Maryland Heights, MO 63043-3211 • Office (314) 434-4570 • FAX (314) 434-080

PAGE OF

CHAIN OF CUSTODY RECORD

ATAS Client Name	- DT					SIS											F	Preservative	l	ab Us	eration and the second
DAMES & MO Project Name	OKE	Project #				aine	Туре	of Anal	ysis	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ Ice Che	mical (see below)		Only	
Modine		r roject#				Containers			200	9/							/ /			Initials	
Form Completed By	2 4 4 . 0 19		PO#	-		õ		/												Date	
MESCHE PA			Commis			o. of	/	oxo	γ,	/ ,	/ ,	/ ,	/ ,	/, /	/ ,	/ ,				8-16	-95
Sample ID	Sample Date	Sample Time	Sample Matrix	Grab	Comp	No.	//	O.									Rema	arks	BA	ation/T	emp ₆ 50
NORTH WALL	8/14	1502	Soil	V		l	X									24	HRT	URN-	137	08.	01
EAST WALL	8/14	1511	Soil	V		1	X										Roun			(12
WESTWALL	8/14	1525	Soil	V		1	X,									CA	LL il	٧			23
SOUTH WALL	8/14	1517	Soil	V,	_	1	X									RE	Suc	is			24
BOTTOM	8/14	1533	Soil	V		1	X									A	SAP.			(35
EB-1	814	1510	Water				X													Ι (06
	1																				
																- Clare de Les de la Company					
Relinquished	/	11 Bl	ceived by:			F	Relinqui	shed by	/ :			Re	ceived	by:		2.		naround Requir 1 to 2 worki			
Signature	rakeis	Var GC	-MORO-	<u>ک</u>	0:						0:							•			
_	A Weig	Signature	- No-		Signa	ature					Signat	ure					-	3 working da	ays		
MIESCHE FR	MINUS		<u> </u>	,0	Print	ed Name					Printo	d Name						_ 5 working da	ays		
Printed Name Printed Name Printed Name Printed Name Printed Name Printed Name				FINI	cu Maille	2				riiile	i Name					-	_ 10 working	days			
Firm		Firm ,			Firm			(2)			Firm							15 working d	ays		
8/15/95 - 11	00	8/16/99	5 09/	5												F	Preservativ	-	-		
Date/Time		Date/Time		<u>ر</u>	Date.	/Time					Date/1	ime					B - HN				
SEND RESULT	rs TO (Nama	& Company) :	DAX	·Pī	210	F	DA	MI	× ×	M	MO	\Box					C - H2				
SEIND RESUL	IO IO (Name	G Company) .	יייי	1 1	,,,	<u></u>	Un	1110	ے د	/ 111	WK						D - Na E - HO				
			Origin	nal to A	TAS/Cop	y to Client											F-				

AMERICAN TECHNICAL & ANALYTICAL SERVICES, INC.

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 • FAX (314) 434-0080

DAMES & MOORE AUG 2 5 1995

August 23, 1995

SPRINGFIELD, MO

Dan Price Dames & Moore 2135 East Sunshine, Suite 105 Springfield, MO 65804

RE: ATAS #13691.01-#13691.03

Modine

Dear Mr. Price:

Enclosed are the analytical reports for the samples received in our laboratory on August 12, 1995.

If, in your review, you should have any questions or require additional information, please call.

Thank you for choosing ATAS for your analytical needs.

Sincerely,

Jeffrey A. Carr Project Manager

Enclosures

JAC/sdp

1716 875 Fee Fee Road ● Maryland Heights, MO 63043 ● (314) 434-4570 - FAX (314) 434-0080

CLIENT: DAMES & MOORE

REPORT: 1369101H(231)

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804

DATE: 08-23-95

ATTN: DAN PRICE

SAMPLE MATRIX : SOIL

ATAS # : 13691.01 DATE SUBMITTED: 08-12-95 DATE ANALYZED: 08-17-95

METHOD REF. : SW846-8010, EPA METHODOLOGY PROJECT : MODINE SAMPLE ID : B-13 8 1/2-13

COMPOUND	REPORTING LIMIT (ug/Kg)	AMOUNT FOUND (ug/Kg)
CHLOROMETHANE	1250	ND
VINYL CHLORIDE	1250	ND
BROMOMETHANE	1250	ND
CHLOROETHANE	1250	ND
triCL, Fl-METHANE	1250	ND
1,1-DICHLOROETHENE	1250	ND
METHYLENE CHLORIDE	1250	ND
trans-1,2-DICHLOROETHEN	E 1250	ND
1,1-DICHLOROETHANE	1250	ND
CHLOROFORM	1250	ND
1,1,1-TRICHLOROETHANE	1250	ND
CARBON TETRACHLORIDE	1250	ND
1,2-DICHLOROETHANE	1250	ND
TRICHLOROETHENE	1250	204000
1,2-DICHLOROPROPANE	1250	ND
_ Br,dicl METHANE	1250	ND
2-Clethyl VINYL ETHER	1250	ND
<pre>trans-1,3-DICHLOROPROPE</pre>	NE 1250	ND
cis-1,3-dicl PROPENE	1250	ND
1,1,2-TRICHLOROETHANE	1250	ND
TETRACHLOROETHENE	1250	2180
diBr,Cl METHANE	1250	ND
CHLOROBENZENE	1250	ND
BROMOFORM	1250	ND
TETRACHLOROETHANE	1250	ND
1,3-DICHLOROBENZENE	1250	ND
1,4-DICHLOROBENZENE	1250	ND
1,2-DICHLOROBENZENE	1250	ND
	s1,2 DICHLOROETHENE (65-135%)	
SURROGATE RECOVERY: p-	CHLOROTOLUENE (40-140%)	84 %

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

ATAS 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT: DAMES & MOORE

REPORT: 1369101H(231)

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804

DATE : 08-23-95

ATTN: DAN PRICE

SAMPLE MATRIX : SOIL

ATAS # : 13691.02 DATE SUBMITTED: 08-12-95 DATE ANALYZED: 08-18-95

METHOD REF. : SW846-8010, EPA METHODOLOGY PROJECT : MODINE

SAMPLE ID : B-16 6-4 1/2

		REPORTING	AMOUNT FOUND
	COMPOUND	LIMIT (ug/Kg)	(ug/Kg)
_	CHLOROMETHANE	5.0	ND
_	VINYL CHLORIDE	5.0	ND
I	BROMOMETHANE	5.0	ND
	CHLOROETHANE	5.0	ND
	triCL,Fl-METHANE	5.0	ND
	1,1-DICHLOROETHENE	5.0	10.9
	METHYLENE CHLORIDE	5.0	29.0 B
_	trans-1,2-DICHLOROETHENE		ND
_	1,1-DICHLOROETHANE	5.0	ND
	CHLOROFORM	5.0	ND
	1,1,1-TRICHLOROETHANE	5.0	ND
	CARBON TETRACHLORIDE	5.0	ND
	1,2-DICHLOROETHANE	5.0	ND
	TRICHLOROETHENE	5.0	28.9
	1,2-DICHLOROPROPANE	5.0	ND
	Br, dicl METHANE	5.0	ND
	2-Clethyl VINYL ETHER	5.0	ND
	trans-1,3-DICHLOROPROPENE	5.0	ND
_	cis-1,3-diCl PROPENE	5.0	ND
	1,1,2-TRICHLOROETHANE	5.0	ND
	TETRACHLOROETHENE	5.0	ND
	diBr,Cl METHANE	5.0	ND
	CHLOROBENZENE	5.0	ND
	BROMOFORM	5.0	ND
_	TETRACHLOROETHANE	5.0	ND
_	1,3-DICHLOROBENZENE	5.0	ND
	1,4-DICHLOROBENZENE	5.0	ND
	1,2-DICHLOROBENZENE	5.0	ND
		2 DICHLOROETHENE (65-135%)	105 %
	SURROGATE RECOVERY: p-CHL	OROTOLUENE (40-140%)	73 %

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

4716 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT: DAMES & MOORE

REPORT: 1369101H(231)

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804

DATE : 08-23-95

ATTN: DAN PRICE

SAMPLE MATRIX : SOIL

ATAS # : 13691.03 DATE SUBMITTED: 08-12-95 DATE ANALYZED: 08-17-95

METHOD REF. : SW846-8010, EPA METHODOLOGY PROJECT : MODINE SAMPLE ID : B-17 (MW3) 4 1/2

_			REPORT	ring		AMOU	NT I	FOUND
_	COMPOUND	:	LIMIT	(ug/Kg)			g/K	
	CHLOROMETHANE		1.0)			ND	
	VINYL CHLORIDE		1.0)			ND	
	BROMOMETHANE		1.0) "			ND	
	CHLOROETHANE		1.0)			ND	
	triCL, Fl-METHANE		1.0				ND	
	1,1-DICHLOROETHENE		1.0				ND	
	METHYLENE CHLORIDE		1.0)		1	3.0	В
-	CIAIIS-I, Z-DICHLORUEIR	IENE	1.0				ND	
_	1,1-DICHLOROETHANE		1.0)			ND	
	CHLOROFORM		1.0)		1	ND	
	1,1,1-TRICHLOROETHANE	C .	1.0)		1	ND	
	CARBON TETRACHLORIDE		1.0)]	ND	
	1,2-DICHLOROETHANE		1.0)		1	ND	
	TRICHLOROETHENE		1.0)		3	. 5	
_	1,2-DICHLOROPROPANE		1.0)			ND	
_	Br, dicl METHANE		1.0)			ND	
	2-Clethyl VINYL ETHER		1.0)			ND	
	trans-1,3-DICHLOROPRO	PENE	1.0)			ND	
	cis-1,3-dicl PROPENE		1.0)			ND	
	1,1,2-TRICHLOROETHANE	:	1.0)			ND	
	TETRACHLOROETHENE		1.0)			ND	
	diBr,Cl METHANE		1.0				ND	
	CHLOROBENZENE		1.0)			ND	
	BROMOFORM		1.0	1			ND	
	TETRACHLOROETHANE		1.0	ĺ			ND	
_	1,3-DICHLOROBENZENE		1.0				ND	
	1,4-DICHLOROBENZENE		1.0				ND	
	1,2-DICHLOROBENZENE		1.0				ND	
	SURROGATE RECOVERY:	cis1,2	DICHLO	ROETHENE	(65-135%)	108	ક્ષ	
		p-CHLOF			(40-140%)	70		

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

REPORT: 1369101H(231)

CLIENT: DAMES & MOORE

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804 DATE : 08-23-95

ATTN: DAN PRICE

SAMPLE MATRIX : SOIL

ATAS # : METHOD BLANK DATE SUBMITTED: 08-12-95 DATE ANALYZED: 08-17-95

METHOD REF. : SW846-8010, EPA METHODOLOGY
PROJECT : MODINE
SAMPLE ID : METHOD BLANK

COMPOUND	REPORTING LIMIT (ug/Kg)	AMOUNT FOUND
	LIMIT (ug/kg)	(ug/Kg)
CHLOROMETHANE	1.0	
VINYL CHLORIDE	1.0	ND
BROMOMETHANE	1.0	ND
CHLOROETHANE	1.0	ND
trict Fl-METHANE		ND
1,1-DICHLOROETHENE METHYLENE CHLORIDE trans-1,2-DICHLOROETH 1,1-DICHLOROETHANE CHLOROFORM 1,1,1-TRICHLOROETHANE	1.0	ND
METHYLENE CHLORIDE	1.0	ND
trans-1,2-DICHLOROETH	ENE 1 0	10.2
1,1-DICHLOROETHANE	1.0	ND
CHLOROFORM	1.0	ND
1,1,1-TRICHLOROETHANE	1.0	ND
CARBON TETRACHLORIDE	1.0	ND
	1.0	ND ND
TRICHLOROETHENE	1.0	ND ND
1,2-DICHLOROPROPANE Br,dicl METHANE	1.0	
Br, dicl METHANE	1.0	ND ND
2-Clethyl VINYL ETHER	1.0	
trans-1,3-DICHLOROPRO	PENE 1.0	ND ND
cis-1,3-dicl PROPENE	1.0	
1,1,2-TRICHLOROETHANE	1.0	ND
TETRACHLOROETHENE	1.0	ND
diBr,Cl METHANE	1.0	ND ND
CHLOROBENZENE	1.0	ND
BROMOFORM	1.0	ND
TETRACHLOROETHANE	1.0	ND
1,3-DICHLOROBENZENE	1.0	
1,4-DICHLOROBENZENE	1.0	ND ND
1,2-DICHLOROBENZENE	1.0	ND
		ND
SURROGATE RECOVERY: C	cis1,2 DICHLOROETHENE(65-135%)	88 %
SURROGATE RECOVERY: p	O-CHLOROTOLUENE (40-140%)	86 %
,	(10 1400)	00 %

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

REPORT: 1369101H(231)

CLIENT: DAMES & MOORE

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804 DATE : 08-23-95

ATTN: DAN PRICE

SAMPLE MATRIX : MATRIX SPIKE

DATE ANALYZED: 08-17-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

COMPOUND	SPIKE ONC (ug/Kg)	BLANK SAMPLE CONC. (ug/Kg)	CONTROL MS MATRIX SPIKE CONC. (ug/Kg)	MS PERCENT RECOVERY
CHLOROMETHANE	20.0	ND	21.0	105.0
VINYL CHLORIDE	20.0	ND	19.9	105.0
BROMOMETHANE	20.0	ND	20.3	99.5
CHLOROETHANE	20.0	ND	20.4	101.5
triCL, Fl-METHANE	20.0	ND	24.3	102.0
1,1-DICHLOROETHENE	20.0	ND	23.3	121.5
METHYLENE CHLORIDE	20.0	10.2	37.9	116.5
trans-1,2-DICHLOROETHEN	E 20.0	ND	21.4	138.5
1,1-DICHLOROETHANE	20.0	ND	22.2	107.0
CHLOROFORM	20.0	0.1	20.4	111.0
1,1,1-TRICHLOROETHANE	20.0	ND	22.3	101.5
CARBON TETRACHLORIDE	20.0	ND	22.3	111.5 111.5
1,2-DICHLOROETHANE	20.0	ND	21.2	106.0
TRICHLOROETHENE	20.0	ND	19.8	99.0
1,2-DICHLOROPROPANE	20.0	ND	19.6	98.0
Br, dicl METHANE	20.0	ND	20.0	100.0
2-Clethyl VINYL ETHER	20.0	ND	20.9	104.5
trans-1,3-DICHLOROPROPE	NE 20.0	ND	20.1	the same and the s
cis-1,3-dicl PROPENE	20.0	ND	21.7	100.5
1,1,2-TRICHLOROETHANE	20.0	ND	21.8	108.5
TETRACHLOROETHENE	20.0	ND	21.6	109.0
diBr,Cl METHANE	20.0	ND	21.4	108.0
CHLOROBENZENE	20.0	ND	21.3	107.0
BROMOFORM	20.0	ND	19.9	106.5 99.5
TETRACHLOROETHANE	20.0	ND	21.2	106.0
1,3-DICHLOROBENZENE	20.0	ND	21.9	106.0
1,4-DICHLOROBENZENE	20.0	ND	21.6	109.5
1,2-DICHLOROBENZENE	20.0	ND	20.9	108.0
			20.5	104.0

CLIENT: DAMES & MOORE

REPORT: 1369101H(231)

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804 DATE : 08-23-95

ATTN: DAN PRICE

SAMPLE MATRIX : MATRIX SPIKE DUPLICATE

DATE ANALYZED: 08-17-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

COMPOUND	SPIKE	SPIKE DUP.		RECOVERY PERCENT
	conc (ug/kg)	CONC. (ug/Kg)	RECOVERY	DIFFERENCE
CHLOROMETHANE	20.0	22.8	114.0	8.22
VINYL CHLORIDE	20.0	21.6	108.0	8.19
BROMOMETHANE	20.0	21.9	109.5	7.58
CHLOROETHANE	20.0	23.0	115.0	11.98
triCL, Fl-METHANE	20.0	23.1	115.5	5.06
1,1-DICHLOROETHENE	20.0	23.1	115.5	0.86
METHYLENE CHLORIDE	20.0	38.9	143.5	3.55
trans-1,2-DICHLOROETHE	NE 20.0	21.5	107.5	0.47
1,1-DICHLOROETHANE	20.0	21.9	109.5	1.36
CHLOROFORM	20.0	21.0	104.5	2.91
1,1,1-TRICHLOROETHANE	20.0	21.6	108.0	3.19
CARBON TETRACHLORIDE	20.0	21.6	108.0	3.19
1,2-DICHLOROETHANE	20.0	21.4	107.0	0.94
TRICHLOROETHENE	20.0	21.3	106.5	7.30
1,2-DICHLOROPROPANE	20.0	21.8	109.0	10.63
Br, dicl METHANE	20.0	20.8	104.0	3.92
2-Clethyl VINYL ETHER	20.0	23.4	117.0	11.29
trans-1,3-DICHLOROPROPE	ENE 20.0	21.6	108.0	7.19
cis-1,3-dicl PROPENE	20.0	21.5	107.5	0.92
1,1,2-TRICHLOROETHANE	20.0	21.7	108.5	0.46
TETRACHLOROETHENE	20.0	22.2	111.0	2.74
diBr,Cl METHANE	20.0	22.4	112.0	4.57
CHLOROBENZENE	20.0	21.5	107.5	0.93
BROMOFORM	20.0	20.6	103.0	3.46
TETRACHLOROETHANE	20.0	22.4	112.0	5.50
1,3-DICHLOROBENZENE	20.0	22.4	112.0	2.26
1,4-DICHLOROBENZENE	20.0	21.9	109.5	1.38
1,2-DICHLOROBENZENE	20.0	20.7	103.5	0.96

CLIENT: DAMES & MOORE

REPORT: 1369101H(231)

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804 DATE : 08-23-95

ATTN: DAN PRICE

SAMPLE MATRIX : SOIL

ATAS # : METHOD BLANK DATE SUBMITTED: 08-12-95 DATE ANALYZED: 08-18-95

METHOD REF. : SW846-8010, EPA METHODOLOGY
PROJECT : MODINE
SAMPLE ID : METHOD BLANK

COMPANY	REPORTING	AMOUNT FOUND
COMPOUND	LIMIT (ug/Kg)	(ug/Kg)
CHLOROMETHANE	1.0	170
VINYL CHLORIDE	1.0	ND
BROMOMETHANE	1.0	ND
CHLOROETHANE	1.0	ND
triCL, F1-METHANE	1.0	ND
1,1-DICHLOROETHENE	1.0	ND
METHYLENE CHLORIDE	1.0	ND
trans-1,2-DICHLOROET	HENE 1.0	1.8
trans-1,2-DICHLOROETI 1,1-DICHLOROETHANE CHLOROFORM	1.0	ND
CHLOROFORM	1.0	ND
1,1,1-TRICHLOROETHAN		ND ND
CARBON TETRACHLORIDE	1.0	ND
1,2-DICHLOROETHANE	1.0	ND
TRICHLOROETHENE	1 0	ND
1,2-DICHLOROPROPANE	1.0	ND
Br, dicl METHANE	1.0	ND
2-Clethyl VINYL ETHER	R 1.0	ND
trans-1,3-DICHLOROPRO	OPENE 1.0	ND
cis-1,3-dicl PROPENE	1.0	ND
1,1,2-TRICHLOROETHANE		ND
TETRACHLOROETHENE	1.0	ND
diBr,Cl METHANE	1.0	ND
CHLOROBENZENE	1.0	ND
BROMOFORM	1.0	ND
TETRACHLOROETHANE	1.0	ND
1,3-DICHLOROBENZENE	1.0	ND
1,4-DICHLOROBENZENE	1.0	ND
1,2-DICHLOROBENZENE	1.0	ND
SURROGATE RECOVERY:	cis1,2 DICHLOROETHENE(65-135%)	98 %
SURROGATE RECOVERY:	p-CHLOROTOLUENE (40-140%)	99 %

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

CLIENT: DAMES & MOORE

REPORT: 1369101H(231)

2135 EAST SUNSHINE - SUITE 105

DATE: 08-23-95

SPRINGFIELD, MO 65804 ATTN: DAN PRICE

SAMPLE MATRIX :

MATRIX SPIKE

DATE ANALYZED: 08-18-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

COMPOUND	SPIKE CONC (ug/Kg)	BLANK SAMPLE CONC. (ug/Kg)	CONTROL MS MATRIX SPIKE CONC. (ug/Kg)	MS PERCENT RECOVERY
CHLOROMETHANE	20.0	ND	20.2	101.0
VINYL CHLORIDE	20.0	ND	21.3	106.5
BROMOMETHANE	20.0	ND	19.8	99.0
CHLOROETHANE	20.0	ND	21.7	108.5
triCL, Fl-METHANE	20.0	0.2	21.8	108.0
1,1-DICHLOROETHENE	20.0	ND	20.2	101.0
METHYLENE CHLORIDE	20.0	1.8	19.2	87.0
trans-1,2-DICHLOROETHE	NE 20.0	ND	19.1	95.5
1,1-DICHLOROETHANE	20.0	ND	17.7	88.5
CHLOROFORM	20.0	0.2	20.9	103.5
1,1,1-TRICHLOROETHANE	20.0	ND	21.7	108.5
CARBON TETRACHLORIDE	20.0	ND	21.7	108.5
1,2-DICHLOROETHANE	20.0	ND	21.2	106.0
TRICHLOROETHENE	20.0	ND	21.2	106.0
1,2-DICHLOROPROPANE	20.0	ND	21.2	106.0
Br, dicl METHANE	20.0	ND	20.8	104.0
2-Clethyl VINYL ETHER	20.0	ND	21.8	109.0
trans-1,3-DICHLOROPROP	ENE 20.0	ND	21.0	105.0
cis-1,3-diCl PROPENE	20.0	ND	21.4	107.0
1,1,2-TRICHLOROETHANE	20.0	ND	21.5	107.5
TETRACHLOROETHENE	20.0	0.1	21.4	106.5
diBr,Cl METHANE	20.0	ND	21.8	109.0
CHLOROBENZENE	20.0	ND	21.3	106.5
BROMOFORM	20.0	ND	21.1	105.5
TETRACHLOROETHANE	20.0	ND	21.8	109.0
1,3-DICHLOROBENZENE	20.0	ND	20.7	103.5
1,4-DICHLOROBENZENE	20.0	ND	21.2	106.0
1,2-DICHLOROBENZENE	20.0	ND	20.7	103.5

REPORT: 1369101H(231)

DATE : 08-23-95

CLIENT: DAMES & MOORE

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804

ATTN: DAN PRICE

SAMPLE MATRIX : MATRIX SPIKE DUPLICATE

DATE ANALYZED: 08-18-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

COMPOUND	SPIKE CONC (ug/Kg)	CONTROL MSD SPIKE DUP. CONC. (ug/kg)	MSD PERCENT RECOVERY	RECOVERY PERCENT DIFFERENCE
CHLOROMETHANE	20.0	19.7	98.5	2 51
VINYL CHLORIDE	20.0	19.2	96.0	2.51 10.37
BROMOMETHANE	20.0	20.0	100.0	1.00
CHLOROETHANE	20.0	21.0	105.0	
triCL, Fl-METHANE	20.0	18.0	89.0	3.28 19.29
1,1-DICHLOROETHENE	20.0	20.1	100.5	
METHYLENE CHLORIDE	20.0	24.1	111.5	0.50
trans-1,2-DICHLOROETHE		22.0	110.0	24.68 14.11
1,1-DICHLOROETHANE	20.0	20.3	101.5	13.68
CHLOROFORM	20.0	20.6	102.0	1.46
1,1,1-TRICHLOROETHANE	20.0	21.5	107.5	0.92
CARBON TETRACHLORIDE	20.0	20.1	100.5	7.66
1,2-DICHLOROETHANE	20.0	21.4	107.0	0.94
TRICHLOROETHENE	20.0	20.5	102.5	3.36
1,2-DICHLOROPROPANE	20.0	21.3	106.5	0.47
Br, dicl METHANE	20.0	21.3	106.5	2.38
2-Clethyl VINYL ETHER	20.0	22.4	112.0	2.71
trans-1,3-DICHLOROPROP	ENE 20.0	21.5	107.5	2.71
cis-1,3-dicl PROPENE	20.0	21.7	108.5	1.39
1,1,2-TRICHLOROETHANE	20.0	21.6	108.5	0.46
TETRACHLOROETHENE	20.0	20.9	104.0	2.38
diBr,Cl METHANE	20.0	21.7	108.5	0.46
CHLOROBENZENE	20.0	20.9	104.5	1.90
BROMOFORM	20.0	22.2	111.0	5.08
TETRACHLOROETHANE	20.0	23.1	115.5	5.79
1,3-DICHLOROBENZENE	20.0	20.8	104.0	0.48
1,4-DICHLOROBENZENE	20.0	20.9	104.5	1.42
1,2-DICHLOROBENZENE	20.0	21.4	107.0	3.32

AMERICAN TECHNICAL & ANALYTICAL SERVICES, Inc. 875 Fee Fee Road • Maryland Heights, MO 63043-3211 • Office (314) 434-4570 • FAX (314) 434-0080

CHAIN OF CUSTODY RECORD

ATAS Client Name	è Ma	DF				ers	T	of Ana	shari-	/	3			7	7	Preservative	The figure of the contract of
Project Name		Project #				ntain	Туре	OI AN	aiysis	Solly	7		//	/ /	//	Ice Chemical (see below	Only Initials W
Form Completed By	FRA	HYIS	PO#			of Containers		1/	(A)	4		//	/ /	/ /	/ /		WP Date
Sample ID	Sample	Sample	Sample	Grab	Comp	No. o	/	Q	//	/ /	//	/ /	/ /	/ /	/ /		B-14-95 Location/Temp
	Date 8-8-75	Time 0845	Sol)	X	ŭ	ı	V	$\overline{}$	\leftarrow	\leftarrow				\leftarrow	$\overline{}$	Remarks	TU 169
B-1661-41/2		11	011	X		1	\Rightarrow									Standard	13691.0)
	8128-7	1645	Scil	X		_	X									lumaroum	1 02
			- 111														V 03
			150														
		a .															
														,			
			9														
																2	
Relinquished by	:	, a Rec	eived by:			R	elinquis	shed by	, <u>.</u>			Par	eived	hve			
	<i>a</i>	Melte	. Los				,	,				1100	eiveu i	Uy.		Turnaround Require 1 to 2 workin	
Signature) -	SULLI	Signature	15		Signat	ture					Signatu	ire				3 working da	ys
Printed Name	\ \ \	Printed Name	e Dor		Printer	d Name					Drintod	Name				5 working da	ys
Miesche Fro	incis	ATI			Time	a manie					Printed	Name			ĺ	10 working d	ays
Firm		Firm			Firm						Firm					15 working da	ays
DAMES & M		8/12/95 Date/Time	· 090	00	Date/T	Timo					5 . 5					Preservative codes A - none	
SIN Q5 SEND RESULTS	S TO (Name &	Company)	DAN		D\/	ille	1.	\ <u>\</u>	ME	(Date/Tir	ne W[) <u> </u>			B - HNO3 C - H2SO4	
, ===	(. 141110 0	- Jopuiiy)			AS/Copy	- C	/) /\	111	0 4	<u> </u>	<u> </u>				D - NaOH E - HCI	
			Origin	ai to Ai A	чэгсору 1	to Client										F	

AMERICAN TECHNICAL & ANALYTICAL SERVICES, INC.

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 • FAX (314) 434-0080

August 28, 1995

DAMES & MOORE AUG 3 0 1995

SPRINGFIELD, MO

Dan Price Dames & Moore 2135 East Sunshine Springfield, MO 65804

RE: ATAS #13714.01-#13714.02

Modine

Dear Mr. Price:

Enclosed are the analytical reports for the samples received in our laboratory on August 8, 1995.

If, in your review, you should have any questions or require additional information, please call.

Thank you for choosing ATAS for your analytical needs.

Sincerely,

Jeffrey A. Carr Project Manager

Enclosures

JAC/dms

REPORT: 1371401H(231)

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804 DATE: 08-28-95

ATTN: DAN PRICE

SAMPLE MATRIX : WATER ATAS # : 13714.01 DATE SUBMITTED: 08-08-95 DATE ANALYZED: 08-22-95

METHOD REF. : SW846-8010, EPA METHODOLOGY PROJECT : MODINE SAMPLE ID : MW-1

-	COMPOUND	1	REPOR LIMIT	TING (ug/L)			NT FOUND
	CHLOROMETHANE		5.	0			ND
	VINYL CHLORIDE		5.				ND
	BROMOMETHANE		5.				ND
	CHLOROETHANE		5.				ND
	triCL, F1-METHANE		5.				ND
	1,1-DICHLOROETHENE		5.	0			ND
	METHYLENE CHLORIDE		5.				ND
_	trans-1,2-DICHLOROETHE	NE	5.	0			ND
_	1,1-DICHLOROETHANE		5.	0			ND
	CHLOROFORM		5.	0			ND
	1,1,1-TRICHLOROETHANE		5.	0			ND
	CARBON TETRACHLORIDE		5.	0			ND
	1,2-DICHLOROETHANE		5.	0			ND
	TRICHLOROETHENE		5.	0			1.8
	1,2-DICHLOROPROPANE		5.	0			ND
	Br, dicl METHANE		5.	0			ND
	2-Clethyl VINYL ETHER		5.	0			ND
_	trans-1,3-DICHLOROPROP	ENE	5.0	0			ND
_	trans-1,3-DICHLOROPROPE cis-1,3-dicl PROPENE		5.0	0			ND
	1,1,2-TRICHLOROETHANE		5.0	0			ND
	TETRACHLOROETHENE		5.0				ND
	diBr,Cl METHANE		5.0)			1D
	CHLOROBENZENE		5.0)			1D
	BROMOFORM		5.0)			1D
	TETRACHLOROETHANE		5.0)			1D
	1,3-DICHLOROBENZENE		5.0				1D
	1,4-DICHLOROBENZENE		5.0)			1D
_	1,2-DICHLOROBENZENE		5.0)			1D
	SURROGATE RECOVERY: Ci	is1,2	DICHLO	PROETHENE (65-	-135%)	108	8
	SURROGATE RECOVERY: p-	-CHLOR	OTOLUE		-140%)	111	

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

REPORT: 1371401H(231)

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804

DATE: 08-28-95

ATTN: DAN PRICE

SAMPLE MATRIX : WATER ATAS # : 13714.02 DATE SUBMITTED: 08-08-95 DATE ANALYZED: 08-22-95

METHOD REF. : SW846-8010, EPA METHODOLOGY PROJECT : MODINE SAMPLE ID : TRIP BLANK

RESULTS REPORTED IN ug/L OR PARTS PER BILLION(PPB)

1	COMPOUND	REPOR LIMIT		AMOUNT FOUN (ug/L)	D
	CHLOROMETHANE	5.	0	ND	
_	VINYL CHLORIDE	5.		ND	
	BROMOMETHANE	5.		ND	
	CHLOROETHANE	5.		ND	
	triCL,Fl-METHANE	5.		ND	
	1,1-DICHLOROETHENE METHYLENE CHLORIDE	5.		ND	
	METHYLENE CHLORIDE	5.	0	ND	
_	trans-1,2-DICHLOROETH	ENE 5.	0	ND	
_	trans-1,2-DICHLOROETH 1,1-DICHLOROETHANE CHLOROFORM	5.	0	ND	
	CHLOROFORM	5.	0	ND	
-	1,1,1-TRICHLOROETHANE		-	ND	
	CARBON TETRACHLORIDE			ND	
	1,2-DICHLOROETHANE	5.		ND	
	TRICHLOROETHENE	5.		ND	
	1,2-DICHLOROPROPANE	5.		ND	
	Br, dicl METHANE	5.		ND	
	2-Clethyl VINVI ETHER	E	n	ND	
_	trans-1,3-DICHLOROPRO	PENE 5.	0	ND	
_	cis-1,3-dicl PROPENE	5.0	0	ND	
	1,1,2-TRICHLOROETHANE	5.0)	ND	
	TETRACHLOROETHENE	5.0		ND	
	trans-1,3-DICHLOROPROS cis-1,3-dicl PROPENE 1,1,2-TRICHLOROETHANE TETRACHLOROETHENE diBr,Cl METHANE	5.0		ND	
	CHLOROBENZENE	5.0)	ND	
	BROMOFORM	5.0)	ND	
	TETRACHLOROETHANE	5.0)	ND	
	1,3-DICHLOROBENZENE	5.0)	ND	
	1,4-DICHLOROBENZENE	5.0)	ND	
_	1,2-DICHLOROBENZENE	5.0) ,	ND	
	SURROGATE RECOVERY:	cis1,2 DICHLO	PROETHENE (65-135%)	99 %	
	SURROGATE RECOVERY: 1	-CHLOROTOLUI	ENE (40-140%)	100 %	

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

REPORT: 1371401H(231)

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804

DATE: 08-28-95

ATTN: DAN PRICE

SAMPLE MATRIX : WATER

ATAS # : METHOD BLANK DATE SUBMITTED: 08-08-95 DATE ANALYZED: 08-22-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

PROJECT : MODINE SAMPLE ID : METHOD BLANK

_	REPORTING	AMOUNT FOUND
COMPOUND	LIMIT (ug/L)	(ug/L)
CVII		• • • •
CHLOROMETHANE	5.0	ND
VINYL CHLORIDE	5.0	ND
BROMOMETHANE	5.0	ND
CHLOROETHANE	5.0	ND
triCL, F1-METHANE	5.0	ND
1,1-DICHLOROETHENE	5.0	ND
METHYLENE CHLORIDE	5.0	ND
trans-1,2-DICHLOROETH 1,1-DICHLOROETHANE CHLOROFORM	HENE 5.0	ND
1,1-DICHLOROETHANE	5.0	ND
		ND
1,1,1-TRICHLOROETHAN		ND
CARBON TETRACHLORIDE	5.0	ND
1,2-DICHLOROETHANE	5.0	ND
TRICHLOROETHENE	5.0	ND
1,2-DICHLOROPROPANE	5.0	ND
Br, dicl METHANE	5.0	ND
2-Clethyl VINYL ETHER	R 5.0	ND
trans-1,3-DICHLOROPRO	OPENE 5.0	ND
trans-1,3-DICHLOROPRO cis-1,3-dicl PROPENE 1,1,2-TRICHLOROETHANE TETRACHLOROETHENE	5.0	ND
1,1,2-TRICHLOROETHANE	5.0	ND
TETRACHLOROETHENE	5.0	ND
diBr,Cl METHANE	5.0	ND
CHLOROBENZENE	5.0	ND
BROMOFORM	5.0	ND
TETRACHLOROETHANE	5.0	ND
1,3-DICHLOROBENZENE	5.0	ND
1,4-DICHLOROBENZENE	5.0	ND
1,2-DICHLOROBENZENE	5.0	ND
	2.00	ND
SURROGATE RECOVERY:	cis1,2 DICHLOROETHENE(65-135%)	110 %
Control of the Contro	p-CHLOROTOLUENE (40-140%)	
	(40 1400)	116 0

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

REPORT: 1371401H(231)

DATE : 08-28-95

CLIENT: DAMES & MOORE

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804

ATTN: DAN PRICE

SAMPLE MATRIX : MATRIX SPIKE

DATE ANALYZED: 08-22-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

•	COMPOUND	SPIKE CONC (ug/L)	CONTROL SAMPLE CONC. (ug/L)	CONTROL MS MATRIX SPIKE CONC. (ug/L)	MS PERCENT RECOVERY
	CHLOROMETHANE VINYL CHLORIDE BROMOMETHANE	20.0 20.0 20.0	ND ND ND	20.6 22.4 21.0	103.0 112.0 105.0
	CHLOROETHANE triCL,Fl-METHANE 1,1-DICHLOROETHENE	20.0 20.0 20.0	ND 0.2 ND	23.5 25.6 22.8	117.5 127.0 114.0
	METHYLENE CHLORIDE trans-1,2-DICHLOROETHE 1,1-DICHLOROETHANE	20.0 NE 20.0 20.0	ND ND ND	18.0 20.6 20.0	90.0 103.0 100.0
	CHLOROFORM 1,1,1-TRICHLOROETHANE CARBON TETRACHLORIDE	20.0 20.0 20.0	0.2 ND ND	21.4 22.2 23.2	106.0 111.0 116.0
	1,2-DICHLOROETHANE TRICHLOROETHENE 1,2-DICHLOROPROPANE Br,diCl METHANE	20.0 20.0 20.0	ND ND ND	20.7 22.2 21.6	103.5 111.0 108.0
	2-Clethyl VINYL ETHER trans-1,3-DICHLOROPROPE cis-1,3-dicl PROPENE	20.0 20.0 ENE 20.0 20.0	ND ND	19.8 23.4 21.2	99.0 117.0 106.0
	1,1,2-TRICHLOROETHANE TETRACHLOROETHENE diBr,Cl METHANE	20.0 20.0 20.0 20.0	ND ND ND	20.8 21.7 22.9	104.0 108.5 114.5
	CHLOROBENZENE BROMOFORM TETRACHLOROETHANE	20.0 20.0 20.0	ND ND ND	20.6 21.6 21.4	103.0 108.0 107.0
	1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE	20.0 20.0 20.0	ND ND ND ND	20.9 20.1 20.2 20.3	104.5 100.5 101.0 101.5
4000				20.5	101.5

REPORT: 1371401H(231)

DATE : 08-28-95

CLIENT: DAMES & MOORE

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804

ATTN: DAN PRICE

SAMPLE MATRIX : MATRIX SPIKE DUPLICATE

DATE ANALYZED: 08-22-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

COMPOUND	SPIKE CONC (ug/L)	CONTROL MSD SPIKE DUP. CONC.(ug/L)	MSD PERCENT RECOVERY	RECOVERY PERCENT DIFFERENCE
CHLOROMETHANE	20.0	21.1	105.5	2 40
VINYL CHLORIDE	20.0	22.4	112.0	2.40
BROMOMETHANE	20.0	20.4	102.0	0.00
CHLOROETHANE	20.0	23.4	117.0	2.90
triCL,Fl-METHANE	20.0	25.7	127.5	0.43
1,1-DICHLOROETHENE	20.0	22.9	114.5	0.39
METHYLENE CHLORIDE	20.0	19.0	95.0	0.44
trans-1,2-DICHLOROETHE	NE 20.0	21.0	105.0	5.40
1,1-DICHLOROETHANE	20.0	20.3	101.5	1.92 1.49
CHLOROFORM	20.0	21.3	105.5	
1,1,1-TRICHLOROETHANE	20.0	22.8	114.0	0.47 2.67
CARBON TETRACHLORIDE	20.0	23.0	115.0	0.86
1,2-DICHLOROETHANE	20.0	21.4	107.0	3.32
TRICHLOROETHENE	20.0	22.2	111.0	0.00
1,2-DICHLOROPROPANE	20.0	21.9	109.5	1.38
Br, dicl METHANE	20.0	21.0	105.0	5.88
2-Clethyl VINYL ETHER	20.0	24.5	122.5	4.59
trans-1,3-DICHLOROPROP	ENE 20.0	21.3	106.5	0.47
cis-1,3-dicl PROPENE	20.0	21.6	108.0	3.77
1,1,2-TRICHLOROETHANE	20.0	22.0	111.0	2.28
TETRACHLOROETHENE	20.0	22.8	114.0	0.44
diBr,Cl METHANE	20.0	21.3	106.5	3.34
CHLOROBENZENE	20.0	21.8	109.0	0.92
BROMOFORM	20.0	22.8	114.0	6.33
TETRACHLOROETHANE	20.0	22.1	110.5	5.58
1,3-DICHLOROBENZENE	20.0	21.6	108.0	7.19
1,4-DICHLOROBENZENE	20.0	21.3	106.5	5.30
1,2-DICHLOROBENZENE	20.0	21.8	109.0	7.12

AMERICAN TECHNICAL & ANALYTICAL SERVICES, Inc. 875 Fee Fee Road · Maryland Heights, MO 63043-3211 · Office (314) 434-4570 · FAX (3) 4) 434-0080 CHAIN OF CUSTODY RECORD CONTROL CON

PAGE ___ OF ___

ATAC Client Name											<u>^</u> X	(O)					
ATAS Client Name . DAMES \$	Moor					SIS.					0	20/2				Preservative	e 🔛 Lab Use 🧢
Drines 9	1710	KD] .⊑	Туре	of Ana	lysis	/ (71.0	×		/	/ ,	Ice Chemical (see below	ഗ്വ [്] Only
Project Name Modifie		Project #				of Containers			alysis	Dr.	VY	`/					Initials,
Form Completed Bu		L	T 50 #			ļ			1.3	Sx)	/ .	/		/ .	/		Initials WP
Form Completed By	JON WILL		PO#			Ę		\mathcal{A}	(1)		/						Blace Black
111100110 +	- vana	<u>></u>			,	0		15	\sim								8/18/95
	Sample	Sample	Sample	Grab	Comp	S	/	9/		/							Location/Temp
Sample ID	Date	Time	Matrix	ပြ	ပိ		/-	3/								Remarks	Location/Temp
m11)-1	8-16	1030	1114	1		2	1				T			ĺ		0-4: 40: 7:0:	21529 COLUMN COL
<u> </u>	0 10	1050	WATER	1-		~	<u> </u>		ļ							STANDARD TURN	113714,01
Trip Blank							V									AROUND	V 02
THE EXTREME	 		 	 	-				 					 		nkywy	W CK
		 															
			l														
							-										23.50 85-9 23 and 1
	-																
				- 1													
															l		
D. I																	
Relinquished by	y:	10 ha Rec	ceived by:			R	elinquis	shed by	/ :			Red	ceived	by:		Turnaround Requi	rements
Advisolo Vin	ancis	I X DIX IT	A tota													1 to 2 work	ng days
Signature	ance	Signature	JAMA -	-	Ciana						0: .						
		1			Signa	iture				1	Signatu	ıre				3 working d	ays
Miesche Fran	cis	WALTE	RDIT	OV	>										1		
MIESCHE Fran Printed Name		Printed Name			Printe	ed Name					Printed	Namo				5 working d	ays
				1		a riame					rinted	Ivaille				10 wadda	d =
DAMES E MC	OORE	ATA	\ \ \	- 1												10 working	days
Firm 170	[FJADY]	Firm			Firm					-	Firm					15 working o	lavs
0-10-05/05/05	2	000	c 12.1													Preservative codes	.u,s
8-18-95/ 09	<u> </u>	5-12-15	5 12:4													A - none	
Date/Time /		Date/Time		_	Date/	Time	,				Date/Ti	me				B - HNO ₃	
SEND RESULT	S TO Mama	Company	AAT	1 1	101	CT: 1	TA	mT	o c	100	1000	_				C - H2SO4	
SCHO RESULT	o io (ivaine d	x Company) : _	DAG	V	1	Ct/	UA	1116	SE	V 1 1	NIC!					D - NaOH	
			Origina	al to ATA	LS/Conv	to Client										E - HCI	
			O. girle		.S. Sopy	Junetil										F -	

AMERICAN TECHNICAL & ANALYTICAL SERVICES, INC.

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 • FAX (314) 434-0080

September 6, 1995

DAMES & MOURE SEP 1 1 1995

SPRINGFIELD, MO

Dan Price Dames & Moore 2135 E Sunshine Street, Suite 105 Springfield, MO 65804

RE: ATAS #13733.01-#13733.07 #27397 - Modine

Dear Mr. Price:

Enclosed are the analytical reports for the samples received in our laboratory on August 24, 1995.

If, in your review, you should have any questions or require additional information, please call.

Thank you for choosing ATAS for your analytical needs.

Sincerely,

Jeffrey A. Carr Project Manager

Enclosures

JAC/pck

171 875 Fee Fee Road ● Maryland Heights, MO 63043 ● (314) 434-4570 - FAX (314) 434-0080

CLIENT:

DAMES & MOORE

2135 E SUNSHINE STREET, SUITE 105

SPRINGFIELD, MO 65804

ATTN: DAN PRICE

REPORT:

1373306HV(221)

DATE : 09-06-95

SAMPLE MATRIX : WATER ATAS # : 13733.06

DATE SUBMITTED: 08-24-95

DATE ANALYZED: 08-30-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

PROJECT

: #27397 - MODINE

SAMPLE ID : MW-2

CHLOROMETHANE 5.0 ND VINYL CHLORIDE 5.0 ND BROMOMETHANE 5.0 ND CHLOROETHANE 5.0 ND triCL, Fl-METHANE 5.0 ND 1,1-DICHLOROETHENE 5.0 ND METHYLENE CHLORIDE 5.0 ND t-1,2-DICHLOROETHENE 5.0 ND	OMPOUND	REPORTING LIMIT (ug/L)	AMOUNT FOUND
VINYL CHLORIDE 5.0 ND BROMOMETHANE 5.0 ND CHLOROETHANE 5.0 ND triCL, Fl-METHANE 5.0 ND 1,1-DICHLOROETHENE 5.0 ND METHYLENE CHLORIDE 5.0 ND t-1,2-DICHLOROETHENE 5.0 ND	II ODOMBELLAND		(ug/L)
BROMOMETHANE 5.0 ND CHLOROETHANE 5.0 ND triCL,Fl-METHANE 5.0 ND 1,1-DICHLOROETHENE 5.0 ND METHYLENE CHLORIDE 5.0 ND t-1,2-DICHLOROETHENE 5.0 ND			ND
CHLOROETHANE 5.0 ND triCL,Fl-METHANE 5.0 ND 1,1-DICHLOROETHENE 5.0 ND METHYLENE CHLORIDE 5.0 ND t-1,2-DICHLOROETHENE 5.0 ND		5.0	ND
triCL,Fl-METHANE 5.0 ND 1,1-DICHLOROETHENE 5.0 ND METHYLENE CHLORIDE 5.0 ND t-1,2-DICHLOROETHENE 5.0 ND			ND
1,1-DICHLOROETHENE 5.0 ND METHYLENE CHLORIDE 5.0 ND t-1,2-DICHLOROETHENE 5.0			ND
METHYLENE CHLORIDE 5.0 ND t-1,2-DICHLOROETHENE 5.0			ND
THYLENE CHLORIDE 5.0 ND ND TO THE STATE OF T	1-D1CHLOROETHENE		ND
L-1,2-DICHLOROETHENE 5.0			
			ND
LI,I-DICHLOROETHANE 5.0	1-DICHLOROETHANE	5.0	
CHLOROFORM 5.0		5.0	
1,1,1-TRICHLOROETHANE 5.0		5.0	
CARBON TETRACHLORIDE 5.0	RBON TETRACHLORIDE	5.0	
T, 2-DICHLOROETHANE 5.0		5.0	
TRICHLOROETHENE 5.0		5.0	
1,2-DICHLOROPROPANE 5.0		5.0	
Br, dicl METHANE 5.0		5.0	
-2-CIETHYL VINYL ETHER 5.0		5.0	
t-1,3-DICHLOROPROPENE 5.0	1,3-DICHLOROPROPENE	5.0	
C-1,3-diCl PROPENE 5.0		5.0	
1,1,2-TRICHLOROETHANE 5.0	1,2-TRICHLOROETHANE		
TETRACHLOROETHENE 5.0			
mdiBr,Cl METHANE 5 0	Br,Cl METHANE		
CHLOROBENZENE 5.0 ND ND S.0 ND	LOROBENZENE		
BROMOFORM 5.0 ND	OMOFORM		
TETRACHLOROETHANE 5.0	TRACHLOROETHANE		
1,3-DICHLOROBENZENE 5.0			
1,4-DICHLOROBENZENE 5.0	4-DICHLOROBENZENE		
1,2-DICHLOROBENZENE 5.0 ND			
		a	ND
SURROGATE RECOVERY: cis1,2 DICHLOROETHENE(65-135%) 83 %	RROGATE RECOVERY: ci	s1,2 DICHLOROETHENE (65-	135%) 82 %
SURROGATE RECOVERY: p-CHLOROTOLUENE (40-140%) 82 %	RROGATE RECOVERY: p-	CHLOROTOLUENE (40-	

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = COMPOUND ALSO FOUND IN BLANK

REPORT: 1373304HV(221)

Duplicate of MW-2

CLIENT: DAMES & MOORE

2135 E SUNSHINE STREET, SUITE 105

SPRINGFIELD, MO 65804 DATE : 09-06-95

ATTN: DAN PRICE

SAMPLE MATRIX : WATER

ATAS # : 13733.04 DATE SUBMITTED: 08-24-95

DATE ANALYZED: 08-30-95

METHOD REF. : SW846-8010, EPA METHODOLOGY PROJECT : #27397 - MODINE

SAMPLE ID : DUP-1

COMPOUND	REPORTING LIMIT (ug/L)	AMOUNT FOUND (ug/L)
CHLOROMETHANE VINYL CHLORIDE	5.0 5.0	ND ND
BROMOMETHANE	5.0	ND
CHLOROETHANE	5.0	ND
<pre>triCL,Fl-METHANE</pre>	5.0	ND
1,1-DICHLOROETHENE	5.0	ND
METHYLENE CHLORIDE		ND
t-1,2-DICHLOROETHE		ND
1,1-DICHLOROETHANE		ND
CHLOROFORM	5.0	ND
1,1,1-TRICHLOROETH		ND
CARBON TETRACHLORII		ND
1,2-DICHLOROETHANE		ND
TRICHLOROETHENE	5.0	ND
1,2-DICHLOROPROPANI		ND
Br, diCl METHANE 2-ClETHYL VINYL ETH	5.0	ND
t-1,3-DICHLOROPROPH		ND
c-1,3-diCl PROPENE		ND
1,1,2-TRICHLOROETHA	5.0	ND
TETRACHLOROETHENE	ANE 5.0 5.0	ND
diBr, Cl METHANE	5.0	ND
CHLOROBENZENE	5.0	ND
BROMOFORM	5.0	ND ND
■ TETRACHLOROETHANE	5.0	ND
1,3-DICHLOROBENZENE	E 5.0	ND ND
1,4-DICHLOROBENZENE		ND
_ 1,2-DICHLOROBENZENE	5.0	ND
		112
■ SURROGATE RECOVERY:		%) 80 %
SURROGATE RECOVERY:	p-CHLOROTOLUENE (40-140	

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = COMPOUND ALSO FOUND IN BLANK

REPORT: 1373307HV(221)

CLIENT: DAMES & MOORE

2135 E SUNSHINE STREET, SUITE 105

SPRINGFIELD, MO 65804 DATE : 09-06-95

ATTN: DAN PRICE

SAMPLE MATRIX : WATER ATAS # : 13733.07 DATE SUBMITTED: 08-24-95 DATE ANALYZED: 08-30-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

PROJECT : #27397 - MODINE

SAMPLE ID : MW-3

GOWDOVD	REPORTING	AMOUNT FOUND
COMPOUND	LIMIT (ug/L)	(ug/L)
CHLOROMETHANE	5.0	
VINYL CHLORIDE	5.0	ND
BROMOMETHANE	5.0	ND
CHLOROETHANE		ND
triCL, Fl-METHANE	5.0	ND
1,1-DICHLOROETHENE	5.0	ND
METHYLENE CHLORIDE	5.0	ND
t-1,2-DICHLOROETHENE	5.0	ND
1,1-DICHLOROETHANE		ND
CHLOROFORM	5.0	ND
	5.0	ND
1,1,1-TRICHLOROETHANE CARBON TETRACHLORIDE		ND
1,2-DICHLOROETHANE		ND
TRICHLOROETHENE	5.0	ND
1,2-DICHLOROPROPANE	5.0	8.0
Br diCl MERLIANE	5.0	ND
Br, dicl METHANE	5.0	ND
2-Clethyl Vinyl Ether		ND
t-1,3-DICHLOROPROPENE		ND
c-1,3-diCl PROPENE	5.0	ND
1,1,2-TRICHLOROETHANE		ND
TETRACHLOROETHENE	5.0	ND
diBr,Cl METHANE	5.0	ND
CHLOROBENZENE BROMOFORM	5.0	ND
	5.0	ND
TETRACHLOROETHANE	5.0	ND
1,3-DICHLOROBENZENE	5.0	ND
1,4-DICHLOROBENZENE	5.0	ND
1,2-DICHLOROBENZENE	5.0	ND
SURROGATE RECOVERY:	cis1,2 DICHLOROETHENE(65-135%)	07.
SURROGATE RECOVERY: 1	O-CHLOROTOLUENE (40-140%)	
	(40-140%)	86 %

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = COMPOUND ALSO FOUND IN BLANK

REPORT: 1373302HV(221)

CLIENT: DAMES & MOORE

2135 E SUNSHINE STREET, SUITE 105

SPRINGFIELD, MO 65804 DATE : 09-06-95

ATTN: DAN PRICE

SAMPLE MATRIX : WATER ATAS # 13733.02 DATE SUBMITTED: 08-24-95 DATE ANALYZED : 08-30-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

PROJECT : #27397 - MODINE

SAMPLE ID : MW-4

COMPOUND	REPORTING LIMIT (ug/L)	AMOUNT FOUND (ug/L)
CHLOROMETHANE	5.0	ND
VINYL CHLORIDE	5.0	ND
BROMOMETHANE	5.0	ND
CHLOROETHANE	5.0	ND
triCL, Fl-METHANE	5.0	ND
1,1-DICHLOROETHENE	5.0	ND
METHYLENE CHLORIDE	5.0	ND
t-1,2-DICHLOROETHENE	7.1.7	ND
1,1-DICHLOROETHANE	5.0	ND
CHLOROFORM	5.0	ND
1,1,1-TRICHLOROETHAN	3.0	ND
CARBON TETRACHLORIDE		ND
1,2-DICHLOROETHANE	5.0	ND
TRICHLOROETHENE	5.0	88.9
1,2-DICHLOROPROPANE		ND
Br, diCl METHANE		ND
2-Clethyl Vinyl ether		ND
t-1,3-DICHLOROPROPENI	E 5.0	ND
c-1,3-diCl PROPENE	5.0	ND
1,1,2-TRICHLOROETHAN		ND
TETRACHLOROETHENE	5.0	ND
diBr,Cl METHANE	5.0	ND
CHLOROBENZENE BROMOFORM	5.0	ND
BROMOFORM	5.0	ND
TETRACHLOROETHANE	5.0	ND
1,3-DICHLOROBENZENE	5.0	ND
1,4-DICHLOROBENZENE	5.0	ND
1,2-DICHLOROBENZENE	5.0	ND
SURROGATE RECOVERY:	cis1,2 DICHLOROETHENE (65-135%)	0.5
SURROGATE RECOVERY:	p-CHLOROTOLUENE (40-140%)	
	(40-1408)	79 %

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = COMPOUND ALSO FOUND IN BLANK

REPORT: 1373305HV(221)

CLIENT: DAMES & MOORE

2135 E SUNSHINE STREET, SUITE 105

SPRINGFIELD, MO 65804 DATE : 09-06-95

ATTN: DAN PRICE

SAMPLE MATRIX : WATER ATAS # : 13733.05 DATE SUBMITTED: 08-24-95 DATE ANALYZED: 08-29-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

PROJECT : #27397 - MODINE

SAMPLE ID : TRIP BLANK

COMPOUND	REPORTING LIMIT (ug/L)	AMOUNT FOUND (ug/L)
CHLOROMETHANE	5.0	ND
■ VINYL CHLORIDE	5.0	ND
BROMOMETHANE	5.0	ND ND
CHLOROETHANE	5.0	ND
triCL,Fl-METHANE	5.0	ND
1,1-DICHLOROETHENE	5.0	ND
METHYLENE CHLORIDE	5.0	ND
t-1,2-DICHLOROETHENE	5.0	
1,1-DICHLOROETHANE	5.0	ND ND
CHLOROFORM	5.0	ND
1,1,1-TRICHLOROETHANE	5.0	ND
■ CARBON TETRACHLORIDE	5.0	ND
1,2-DICHLOROETHANE	5.0	ND
TRICHLOROETHENE	5.0	ND
_ 1,2-DICHLOROPROPANE	5.0	ND
Br, diCl METHANE	5.0	ND
2-Clethyl VINYL ETHER	5.0	ND
t-1,3-DICHLOROPROPENE	5.0	ND
c-1,3-diCl PROPENE	5.0	ND
1,1,2-TRICHLOROETHANE	5.0	ND
TETRACHLOROETHENE	5.0	ND
diBr,Cl METHANE	5.0	ND
CHLOROBENZENE	5.0	ND
BROMOFORM	5.0	ND
TETRACHLOROETHANE	5.0	ND
1,3-DICHLOROBENZENE	5.0	ND
■1,4-DICHLOROBENZENE	5.0	ND
1,2-DICHLOROBENZENE	5.0	ND
GVIDDOGA IIID		
SURROGATE RECOVERY: C	cis1,2 DICHLOROETHENE(65-135%)	90 %
SURROGATE RECOVERY: p	O-CHLOROTOLUENE (40-140%)	88 %

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = COMPOUND ALSO FOUND IN BLANK

CLIENT: DAMES & MOORE

REPORT: 1373303HV(221)

2135 E SUNSHINE STREET, SUITE 105 SPRINGFIELD, MO 65804

DATE : 09-06-95

ATTN: DAN PRICE

SAMPLE MATRIX : WATER

ATAS # : 13733.03

DATE SUBMITTED: 08-24-95

DATE ANALYZED: 08-30-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

PROJECT

: #27397 - MODINE

SAMPLE ID : EB-2

COMPOUND	REPORTING LIMIT (ug/L)	AMOUNT FOUND (ug/L)
CHLOROMETHANE	5.0	ND
VINYL CHLORIDE	5.0	ND ND
BROMOMETHANE	5.0	ND ND
CHLOROETHANE	5.0	ND ND
triCL, Fl-METHANE	5.0	ND
1,1-DICHLOROETHENE	5.0	ND ND
METHYLENE CHLORIDE	5.0	ND
t-1,2-DICHLOROETHENE	5.0	ND
1,1-DICHLOROETHANE	5.0	ND
CHLOROFORM	5.0	ND
1,1,1-TRICHLOROETHANE	5.0	ND
CARBON TETRACHLORIDE	5.0	ND
1,2-DICHLOROETHANE	5.0	ND
TRICHLOROETHENE	5.0	ND
1,2-DICHLOROPROPANE	5.0	ND
Br, diCl METHANE	5.0	ND
2-Clethyl VINYL ETHER	5.0	ND
t-1,3-DICHLOROPROPENE	5.0	ND
c-1,3-diCl PROPENE	5.0	ND
1,1,2-TRICHLOROETHANE	5.0	ND
TETRACHLOROETHENE	5.0	ND
diBr,Cl METHANE	5.0	ND
CHLOROBENZENE	5.0	ND
BROMOFORM	5.0	ND
TETRACHLOROETHANE	5.0	ND
1,3-DICHLOROBENZENE	5.0	ND
1,4-DICHLOROBENZENE	5.0	ND
1,2-DICHLOROBENZENE	5.0	ND
CLIDDOCATIE DECOMENT		
	cis1,2 DICHLOROETHENE(65-135%)	
SURROGATE RECOVERY: 1	O-CHLOROTOLUENE (40-140%)	97 %

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = COMPOUND ALSO FOUND IN BLANK

REPORT: 1373301HV(221)

CLIENT: DAMES & MOORE

2135 E SUNSHINE STREET, SUITE 105

SPRINGFIELD, MO 65804 DATE: 09-06-95

ATTN: DAN PRICE

SAMPLE MATRIX : SOIL ATAS # 13733.01 : DATE SUBMITTED: 08-24-95 DATE ANALYZED: 08-29-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

PROJECT : #27397 - MODINE

SAMPLE ID : MW-3

	COMPOUND	REPORTING	AMOUNT FOUND
	COMPOUND	LIMIT (ug/Kg)	(ug/Kg)
	CHLOROMETHANE	5.0	ND
	VINYL CHLORIDE	5.0	ND
	BROMOMETHANE	5.0	ND
	CHLOROETHANE	5.0	ND
	triCL,Fl-METHANE	5.0	ND
	1,1-DICHLOROETHENE	5.0	ND
	METHYLENE CHLORIDE	5.0	23.8
	t-1,2-DICHLOROETHENE	5.0	ND
	1,1-DICHLOROETHANE	5.0	ND
	CHLOROFORM	5.0	ND
	1,1,1-TRICHLOROETHANE	5.0	ND
	CARBON TETRACHLORIDE		ND
	1,2-DICHLOROETHANE	5.0	ND
_	TRICHLOROETHENE	5.0	ND
	1,2-DICHLOROPROPANE	5.0	ND
	Br, dicl METHANE	5.0	ND
	2-Clethyl VINYL ETHER		ND
	t-1,3-DICHLOROPROPENE	5.0	ND
	c-1,3-diCl PROPENE	5.0	ND
	1,1,2-TRICHLOROETHANE	5.0	ND
	TETRACHLOROETHENE	5.0	ND
	diBr,Cl METHANE	5.0	ND
	CHLOROBENZENE	5.0	ND
	BROMOFORM	5.0	ND
	TETRACHLOROETHANE	5.0	ND
	1,3-DICHLOROBENZENE	5.0	ND
	1,4-DICHLOROBENZENE	5.0	ND
_	1,2-DICHLOROBENZENE	5.0	ND
	SURROGATE RECOVERY.	cis1,2 DICHLOROETHENE(65-135%)	05 %
	SURROGATE RECOVERY:	p-CHLOROTOLUENE (40-140%)	91 %
		(100)	J 1 0

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = COMPOUND ALSO FOUND IN BLANK

REPORT: 1373308HV(221)

CLIENT: DAMES & MOORE

2135 E SUNSHINE STREET, SUITE 105

SPRINGFIELD, MO 65804 DATE : 09-06-95

ATTN: DAN PRICE

SAMPLE MATRIX : WATER

ATAS # : METHOD BLANK DATE SUBMITTED: 08-24-95 DATE ANALYZED: 08-29-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

PROJECT : #27397 - MODINE SAMPLE ID : METHOD BLANK

_		REPOR			AMOUNT	FOUND
COMPO	ND	LIMIT	(ug/L)		(ug/I	
CHLORO	METHANE	5.	0		NID	
	CHLORIDE	5.			ND	
	METHANE	5.			ND	
	ETHANE	5.			ND	
	Fl-METHANE	5.			ND	
	CHLOROETHENE	5.			ND	
METHYL	ENE CHLORIDE	5.			ND	
	DICHLOROETHENE				ND	
	CHLOROETHANE	5.			ND	
CHLORO		5.			ND	
	TRICHLOROETHAN				ND	
	TETRACHLORIDE				ND	
	CHLOROETHANE	5.			ND	
	OROETHENE	5.			ND ND	
	CHLOROPROPANE	5.			ND	
	l METHANE	5.			ND	
	HYL VINYL ETHE	R 5.			ND	
	DICHLOROPROPEN				ND	
	dicl PROPENE	- 5.			ND	
	TRICHLOROETHAN				ND	
	HLOROETHENE	5.			ND	
adiBr,C	l METHANE	5.			ND	
CHLORO	ETHANE BENZENE ORM HLOROETHANE	5.			ND	
BROMOF	ORM	5.			ND	
	HLOROETHANE	5.	0		ND	
	CHLOROBENZENE	5.	0		ND	
	CHLOROBENZENE	5.	0		ND	
1,2-DI	CHLOROBENZENE	5.)		ND	
CLIDBOC	ATE DECOMENT					
SUKKUG	ATE RECOVERY:	cisl,2 DICHLO				
DONNOC	ATE RECOVERY:	p-CHLOROTOLUI	INE	(40-140%)	88 %	

⁼ OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

LABORATORY QUALITY CONTROL SEQUENCE

SAMPLE MATRIX : WATER

DATE ANALYZED : 08-29-95

REPORT DATE: 09-06-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

CONTROL SPIKE

COMPOUND	SPIKE CONC (ug/L)	CONTROL SAMPLE CONC.(ug/L)	CONTROL MS MATRIX SPIKE CONC.(ug/L)	MS PERCENT RECOVERY
CHLOROMETHANE	20.0	ND	18.4	92.0
_ VINYL CHLORIDE	20.0	ND	22.2	111.0
BROMOMETHANE	20.0	ND	21.1	105.5
CHLOROETHANE	20.0	ND	22.0	110.0
triCL,Fl-METHANE	20.0	ND	22.0	110.0
1,1-DICHLOROETHENE	20.0	ND	21.8	109.0
METHYLENE CHLORIDE	20.0	0.2	20.9	103.5
t-1,2-DICHLOROETHENE	20.0	ND	22.3	111.5
1,1-DICHLOROETHANE	20.0	ND	21.8	109.0
CHLOROFORM	20.0	0.1	21.1	105.0
1,1,1-TRICHLOROETHAN		ND	22.8	114.0
CARBON TETRACHLORIDE		ND	23.3	116.5
1,2-DICHLOROETHANE	20.0	ND	22.2	111.0
TRICHLOROETHENE	20.0	ND	22.0	110.0
1,2-DICHLOROPROPANE	20.0	ND	22.1	110.5
Br, dicl METHANE	20.0	ND	20.5	102.5
2-Clethyl VINYL ETHE		ND	26.6	133.0
c-1,3-DICHLOROPROPEN		ND	22.2	111.0
t-1,3-diCl PROPENE	20.0	ND	21.2	106.0
1,1,2-TRICHLOROETHAN		ND	21.5	107.5
TETRACHLOROETHENE	20.0	ND	21.6	108.0
diBr,Cl METHANE	20.0	ND	21.2	106.0
CHLOROBENZENE	20.0	ND	20.1	100.3
BROMOFORM	20.0	ND	20.9	104.5
TETRACHLOROETHANE	20.0	ND	21.2	106.0
1,3-DICHLOROBENZENE	20.0	ND	19.6	98.0
1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE	20.0	ND	20.3	101.5
T,Z-DICHLOROBENZENE	20.0	ND	19.0	95.0

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

REPORT DATE: 09-06-95

LABORATORY QUALITY CONTROL SEQUENCE

SAMPLE MATRIX : WATER

DATE ANALYZED : 08-29-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

CONTROL SPIKE DUPLICATE

COMPOUND	SPIKE CONC (ug/L)	CONTROL MSD SPIKE DUP. CONC.(ug/L)	MSD PERCENT RECOVERY	RECOVERY PERCENT DIFFERENCE
CHLOROMETHANE	20.0	18.1	90.5	1 64
VINYL CHLORIDE	20.0	21.1	105.5	1.64
BROMOMETHANE	20.0	20.9	104.5	5.08
CHLOROETHANE	20.0	20.8	104.5	0.95
triCL,Fl-METHANE	20.0	21.9	109.5	5.61 0.46
1,1-DICHLOROETHENE	20.0	20.9	104.5	4.22
METHYLENE CHLORIDE	20.0	20.1	99.5	3.94
t-1,2-DICHLOROETHENE	20.0	21.4	107.0	4.12
1,1-DICHLOROETHANE	20.0	21.3	106.5	2.32
CHLOROFORM	20.0	20.3	101.0	3.88
1,1,1-TRICHLOROETHAN		20.7	103.5	9.66
CARBON TETRACHLORIDE	20.0	23.1	115.5	0.86
1,2-DICHLOROETHANE	20.0	22.3	111.5	0.45
TRICHLOROETHENE	20.0	23.3	116.5	5.74
1,2-DICHLOROPROPANE	20.0	23.3	116.5	5.29
Br, diCl METHANE	20.0	21.3	106.5	3.83
2-Clethyl VINYL ETHE	R 20.0	26.4	132.0	0.75
c-1,3-DICHLOROPROPEN	E 20.0	21.7	108.5	2.28
t-1,3-diCl PROPENE	20.0	21.3	106.5	0.47
1,1,2-TRICHLOROETHAN	E 20.0	21.0	105.0	2.35
TETRACHLOROETHENE	20.0	20.6	103.0	4.74
diBr,Cl METHANE	20.0	21.1	105.5	0.47
CHLOROBENZENE	20.0	18.7	93.5	7.22
BROMOFORM	20.0	22.4	112.0	6.93
TETRACHLOROETHANE	20.0	23.0	115.0	8.14
1,3-DICHLOROBENZENE	20.0	20.1	100.5	2.32
1,4-DICHLOROBENZENE	20.0	20.6	103.0	1.47
1,2-DICHLOROBENZENE	20.0	19.3	96.5	1.57

REPORT: 1373308HV(221)

CLIENT: DAMES & MOORE

2135 E SUNSHINE STREET, SUITE 105

SPRINGFIELD, MO 65804 DATE : 09-06-95

ATTN: DAN PRICE

SAMPLE MATRIX : WATER

ATAS # : METHOD BLANK DATE SUBMITTED: 08-24-95 DATE ANALYZED : 08-30-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

PROJECT : #27397 - MODINE SAMPLE ID : METHOD BLANK

RESULTS REPORTED IN ug/L OR PARTS PER BILLION(PPB)

DEDODETAG

I	COMPOUND	REPORTING LIMIT (ug/L)	AMOUNT FOUND (ug/L)
_	CHLOROMETHANE	5.0	ND
	VINYL CHLORIDE	5.0	ND
	BROMOMETHANE	5.0	ND
	CHLOROETHANE	5.0	ND
_	triCL,Fl-METHANE	5.0	ND
	1,1-DICHLOROETHENE	5.0	ND
	METHYLENE CHLORIDE	5.0	ND
	t-1,2-DICHLOROETHENE	5.0	ND
	1,1-DICHLOROETHANE	5.0	ND
	CHLOROFORM	5.0	ND
	1,1,1-TRICHLOROETHAN		ND
	CARBON TETRACHLORIDE	5.0	ND
	1,2-DICHLOROETHANE	5.0	ND
	TRICHLOROETHENE	5.0	ND
	1,2-DICHLOROPROPANE	5.0	ND
	Br, diCl METHANE		ND
	2-Clethyl VINYL ETHE		ND
	c-1,3-DICHLOROPROPEN		ND
	t-1,3-diCl PROPENE		ND
	1,1,2-TRICHLOROETHANI		ND
	TETRACHLOROETHENE	5.0	ND
	diBr,Cl METHANE	5.0	ND
	CHLOROBENZENE	5.0	ND
_	BROMOFORM	5.0	ND
	TETRACHLOROETHANE	5.0	ND
	1,3-DICHLOROBENZENE	5.0	ND
	1,4-DICHLOROBENZENE	5.0	ND
_	1,2-DICHLOROBENZENE	5.0	ND
	SURROGATE RECOVERY.	gig1 2 DIGHT ODODGHDND/65	
	SURROGATE RECOVERY:	cis1,2 DICHLOROETHENE (65-1358	
	THE RECOVERY.	p-CHLOROTOLUENE (40-140%	s) 87 %

⁼ OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

LABORATORY QUALITY CONTROL SEQUENCE

SAMPLE MATRIX : WATER REPORT DATE: 09-06-95

DATE ANALYZED : 08-30-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

MATRIX SPIKE

COMPOUND	SPIKE CONC (ug/L)	13733.03 SAMPLE CONC.(ug/L)	13733.03 MS MATRIX SPIKE CONC.(ug/L)	MS PERCENT RECOVERY
CHLOROMETHANE	20.0	ND	19.6	98.0
VINYL CHLORIDE	20.0	ND	19.7	98.5
BROMOMETHANE	20.0	ND	20.8	104.0
CHLOROETHANE	20.0	ND	21.3	104.0
triCL,Fl-METHANE	20.0	0.2	21.3	105.5
1,1-DICHLOROETHENE	20.0	ND	21.0	105.0
METHYLENE CHLORIDE	20.0	1.3	21.7	102.0
t-1,2-DICHLOROETHENE	20.0	ND	20.3	101.5
1,1-DICHLOROETHANE	20.0	ND	20.3	101.5
CHLOROFORM	20.0	3.2	21.8	93.0
1,1,1-TRICHLOROETHAN		ND	20.1	100.5
CARBON TETRACHLORIDE	20.0	ND	20.4	102.0
1,2-DICHLOROETHANE	20.0	ND	20.4	102.0
TRICHLOROETHENE	20.0	ND	19.8	99.0
1,2-DICHLOROPROPANE	20.0	ND	20.5	102.5
Br, diCl METHANE	20.0	1.3	20.2	94.5
2-Clethyl VINYL ETHE		ND	8.5	42.5
c-1,3-DICHLOROPROPEN		ND	18.5	92.5
t-1,3-diCl PROPENE	20.0	ND	19.4	97.0
1,1,2-TRICHLOROETHAN		ND	21.1	105.5
TETRACHLOROETHENE	20.0	0.1	20.4	101.5
diBr,Cl METHANE	20.0	0.9	19.2	91.5
CHLOROBENZENE	20.0	ND	18.6	93.0
BROMOFORM	20.0	ND	17.8	89.0
TETRACHLOROETHANE	20.0	ND	18.8	94.0
1,3-DICHLOROBENZENE	20.0	ND	18.1	90.5
1,4-DICHLOROBENZENE	20.0	ND	17.8	89.0
1,2-DICHLOROBENZENE	20.0	ND	19.6	98.0

LABORATORY QUALITY CONTROL SEQUENCE

SAMPLE MATRIX : WATER

REPORT DATE: 09-06-95

DATE ANALYZED : 08-30-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

MATRIX SPIKE DUPLICATE

COMPOUND	SPIKE CONC (ug/L)	13733.03 MSD SPIKE DUP. CONC.(ug/L)	MSD PERCENT RECOVERY	RECOVERY PERCENT DIFFERENCE
CHLOROMETHANE	20.0	18.7	93.5	4.70
VINYL CHLORIDE	20.0	19.7	98.5	0.00
BROMOMETHANE	20.0	18.8	94.0	10.10
CHLOROETHANE	20.0	19.9	99.5	6.80
triCL, Fl-METHANE	20.0	19.4	96.0	9.43
1,1-DICHLOROETHENE	20.0	19.2	96.0	8.96
METHYLENE CHLORIDE	20.0	20.5	96.0	6.06
t-1,2-DICHLOROETHEN	E 20.0	20.1	100.5	0.99
1,1-DICHLOROETHANE	20.0	19.8	99.0	2.49
CHLOROFORM	20.0	23.4	101.0	8.25
1,1,1-TRICHLOROETHAN		20.6	103.0	2.46
_ CARBON TETRACHLORIDE	20.0	19.9	99.3	2.48
1,2-DICHLOROETHANE	20.0	20.9	104.5	2.42
TRICHLOROETHENE	20.0	19.8	99.0	0.00
1,2-DICHLOROPROPANE	20.0	20.0	100.0	2.47
Br, dicl METHANE	20.0	21.4	100.5	6.15
2-Clethyl VINYL ETHE		2.4	12.0	111.93
c-1,3-DICHLOROPROPEN	IE 20.0	20.0	100.0	7.79
t-1,3-diCl PROPENE	20.0	20.7	103.3	6.48
1,1,2-TRICHLOROETHAN	IE 20.0	20.0	100.0	6.35
TETRACHLOROETHENE	20.0	20.3	101.0	0.49
diBr,Cl METHANE	20.0	19.7	94.0	2.70
CHLOROBENZENE	20.0	20.2	101.0	8.25
BROMOFORM	20.0	20.0	100.0	11.64
TETRACHLOROETHANE	20.0	19.2	96.0	2.10
1,3-DICHLOROBENZENE	20.0	21.4	107.0	16.71
1,4-DICHLOROBENZENE	20.0	21.4	107.0	18.37
1,2-DICHLOROBENZENE	20.0	21.0	105.0	6.90

SILVER

MERCURY

SELENIUM

ATAS 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT: DAMES & MOORE

2135 E SUNSHINE STREET, SUITE 105

SPRINGFIELD, MO 65804

ATTN: DAN PRICE

REPORT:

1373301MT(221)

DATE :

09-06-95

09-06-95

08-30-95

09-06-95

SW 6010

SW 6010

SW 7470

SAMPLE MATRIX :

SOIL

0.20

2.00

0.20

ATAS #

13733.01

DATE SUBMITTED: 08-24-95 PROJECT :

#27397 - MODINE

SAMPLE ID : MW-3

PARAMETER	REPORTING LIMIT	UNITS	RESULTS	DATE ANALYZED	METHOD REFERENCE	
METALS						
ARSENIC BARIUM CADMIUM CHROMIUM LEAD	1.00 0.40 0.10 0.10 1.00	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	4.35 31.3 0.372 4.50 84.1	09-06-95 09-06-95 09-06-95 09-06-95	SW 6010 SW 6010 SW 6010 SW 6010	

ND

ND

ND

mg/Kg

mg/Kg

mg/Kg

mg/Kg = PARTS PER MILLION(PPM)

= NOT DETECTED ABOVE REPORTING LIMIT

1745 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT:

DAMES & MOORE

2135 E SUNSHINE STREET, SUITE 105

SPRINGFIELD, MO 65804

ATTN: DAN PRICE

REPORT:

1373308MT(221)

DATE :

09-06-95

QA/QC

DESCRIPTION		PARAMETER	RESULTS	
METHOD BLANK	09-06-95 09-06-95 09-06-95 09-06-95 09-06-95 09-06-95 09-06-95	ARSENIC BARIUM CADMIUM CHROMIUM LEAD SILVER SELENIUM MERCURY	<0.40 mg <0.10 mg <0.10 mg <1.00 mg <0.20 mg <2.00 mg	g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg
BLANK SPIKE	09-06-95 09-06-95 09-06-95 09-06-95 09-06-95 09-06-95 09-06-95 08-30-95	ARSENIC BARIUM CADMIUM CHROMIUM LEAD SILVER SELENIUM MERCURY	100 % RE 97 % RE 99 % RE 102 % RE 100 % RE 99 % RE	ECOVERY ECOVERY ECOVERY ECOVERY ECOVERY ECOVERY ECOVERY

AMERICAN TECHNICAL & ANALYTICAL SERVICES, Inc. 875 Fee Fee Road · Maryland Heighls, MO 63043-3211 · Office (314) 434-4570 · FAX (314) 434-0080

PAGE ____ OF ___

CF TO THE REAL PROPERTY OF THE PERTY OF THE		CHAIN OF CU	43-3211 • Office (314) 434-4570 • FAX (314)	434-0080	or
ATAS Client Name		OTIAIN OF CO	STODY RECORD	,, , , , , , , , , , , , , , , , , , ,	
DAMES & MOORE	Sis		18/30/38/S	Preservative	L National Control
Project Name Project #	Containers	Type of Analysis	\$\\d\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ice Chemical (see below)	
1 1/100/14 1 177207	l ti			///////	Initials
Form Completed By PO#	Ö		X/\0\X\5\X\	/////	LA
C	of.	1 /0/ 4	7,5) / / /		Date
Sample ID Sample Sample Sample Date Time Matrix	ė,	1,00,00,0	5/ / / / /		8-24-95
		Type of Analysis		Remarks	Location/Temp
		X X		May need more	the state of the s
MW-4 8-22 1045 Water x	2				13733.0
		1-1-1-1-1-1-1		a way lysis on	02
Due i com water A	2	X		Soil for MW3	· 有更加的 医型化性 (数1 8 4 8 7
DUP-1 8-22 1840 Water x	2				- 03
Trip Blank	١	X		Standard turn	04
100.41	7			around time	05
The state of the s	4	X			la di William di Salata di
MW-3 8-22 1754 Water X	2	X			106
	,				Ψ 07
Relinquished by:					
1. A.D. 1. Co [] A.D. H. H. H.	Re	Relinquished by:	Received by:	Turnaround Requiren	nents
Signatura francis fran				1 to 2 working	days
Signature Signature Signa	ture		Signature	2	
Miesche Francis WALTER DOTSON				3 working days	3
Printed Name Printed Name Printed	d Name		Printed Name	5 working days	3
Dames & Moore ATAS			Timed Name	10 working day	
Firm Firm Firm				10 working day	'S
000000			Firm	15 working days	5
Date/Time)				Preservative codes	
Dater	ime		Date/Time	A - none B - HNO3	
SEND RESULTS TO (Name & Company):	ce	Damesc	Moore	C - H2SO4	
		/	110010.	D - NaOH	
Original to ATAS/Copy to	o Client			ETHCI VOCS	2

AMERICAN TECHNICAL & ANALYTICAL SERVICES, INC.

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 • FAX (314) 434-0080

DAMES & MOORE
DEC 4 1995

November 30, 1995

SPRINGFIELD, MO

Miesche Francis Dames & Moore 2135 East Sunshine - Suite 105 Springfield, MO 65804

RE: ATAS #14300.01-#14300.06 #27397-005-045 - MODINE TSD

Dear Ms. Francis:

Enclosed are the analytical reports for the samples received in our laboratory on November 17, 1995.

If, in your review, you should have any questions or require additional information, please call.

Thank you for choosing ATAS for your analytical needs.

Sincerely,

Jeffrey A. Carr Project Manager

Enclosures

JAC/dms

ATA 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT: DAMES & MOORE

REPORT: 1430001H(233)

2135 EAST SUNSHINE - SUITE 105

DATE : 11-29-95

SPRINGFIELD, MO 65804 ATTN: MIESCHE FRANCIS

SAMPLE MATRIX : WATER

ATAS # : 14300.01

DATE SUBMITTED: 11-17-95

DATE ANALYZED: 11-21-95

METHOD REF.: SW846-8010, EPA METHODOLOGY
PROJECT: #27397-005-045 - MODINE TSD
SAMPLE ID: TRIP BLANK

COMPOUND	REPORTING LIMIT (ug/L)	AMOUNT FOUND (ug/L)
CHLOROMETHANE	5.0	ND
VINYL CHLORIDE	5.0	ND ND
BROMOMETHANE	5.0	ND
CHLOROETHANE	5.0	ND
triCL, F1-METHANE	5.0	ND
1,1-DICHLOROETHENE	5.0	ND
METHYLENE CHLORIDE	5.0	ND ND
t-1,2-DICHLOROETHENE	5.0	ND
1,1-DICHLOROETHANE	5.0	ND
CHLOROFORM	5.0	ND
1,1,1-TRICHLOROETHANE		ND
CARBON TETRACHLORIDE	5.0	ND
1,2-DICHLOROETHANE	5.0	ND
TRICHLOROETHENE	5.0	ND
1,2-DICHLOROPROPANE	5.0	ND
Br,dicl METHANE	5.0	ND
2-Clethyl VINYL ETHER	5.0	ND
t-1,3-DICHLOROPROPENE	5.0	ND
c-1,3-dicl PROPENE	5.0	ND
1,1,2-TRICHLOROETHANE	5.0	ND
TETRACHLOROETHENE	5.0	ND
diBr,Cl METHANE	5.0	ND
CHLOROBENZENE	5.0	ND
BROMOFORM	5.0	ND
TETRACHLOROETHANE	5.0	ND
1,3-DICHLOROBENZENE	5.0	ND
1,4-DICHLOROBENZENE	5.0	ND
1,2-DICHLOROBENZENE	5.0	ND
SURROGATE RECOVERY:	2-BROMO-1-CHLOROPROPANE(65-35%)	90 %
SURROGATE RECOVERY:	p-CHLOROTOLUENE (40-140%)	100 %

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

ATAS 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT: DAMES & MOORE

REPORT: 1430001H(233)

DATE : 11-29-95

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804

ATTN: MIESCHE FRANCIS

SAMPLE MATRIX : WATER ATAS # : 14300.06 DATE SUBMITTED: 11-17-95 DATE ANALYZED: 11-21-95

METHOD REF. : SW846-8010, EPA METHODOLOGY PROJECT : #27397-005-045 - MODINE TSD SAMPLE ID : MW-1

	COMPOUND	REPORTING	AMOUNT FOUND
	COMI COME	LIMIT (ug/L)	(ug/L)
	CHLOROMETHANE	5.0	ND
	VINYL CHLORIDE	5.0	ND
	BROMOMETHANE	5.0	ND
H	CHLOROETHANE	5.0	ND
_	triCL, Fl-METHANE	5.0	ND
	1,1-DICHLOROETHENE	5.0	ND
	METHYLENE CHLORIDE	5.0	ND
	t-1,2-DICHLOROETHENE	5.0	ND
_	1,1-DICHLOROETHANE	5.0	ND
	CHLOROFORM	5.0	ND
	1,1,1-TRICHLOROETHAN		ND
	CARBON TETRACHLORIDE	5.0	ND
+	1,2-DICHLOROETHANE	5.0	ND
	TRICHLOROETHENE	5.0	9.4
11	1,2-DICHLOROPROPANE	5.0	ND
	Br, dicl METHANE	5.0	ND
	2-Clethyl Vinyl Ether	R 5.0	ND
	t-1,3-DICHLOROPROPEN	E 5.0	ND
	c-1,3-dici Propene	5.0	ND
	1,1,2-TRICHLOROETHAN	E 5.0	ND
	TETRACHLOROETHENE	5.0	ND
	diBr,Cl METHANE	5.0	ND
	CHLOROBENZENE	5.0	ND
	BROMOFORM	5.0	ND
	TETRACHLOROETHANE	5.0	ND
	1,3-DICHLOROBENZENE	5.0	ND
	1,4-DICHLOROBENZENE	5.0	ND
	1,2-DICHLOROBENZENE	5.0	ND
	SURROGATE RECOVERY:	2-BROMO-1-CHLOROPROPANE(65-35%)	92 %
	SURROGATE RECOVERY:	p-CHLOROTOLUENE (40-140%)	97 %
		•	

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

REPORT: 1430001H(233)

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804 DATE: 11-29-95

ATTN: MIESCHE FRANCIS

SAMPLE MATRIX : WATER ATAS # : 14300.04 DATE SUBMITTED: 11-17-95 DATE ANALYZED: 11-21-95

METHOD REF. : SW846-8010, EPA METHODOLOGY PROJECT : #27397-005-045 - MODINE TSD SAMPLE ID : MW-2

		REPORTING	AMOUNT FOUNI)
	COMPOUND	REPORTING LIMIT (ug/L)	(ug/L)	
			» (- ,	
	CHLOROMETHANE	5.0	ND	
_	VINYL CHLORIDE	5.0	ND	
	BROMOMETHANE	5.0	ND	
	CHLOROETHANE	5.0	ND	
	triCL, Fl-METHANE	5.0	ND	
	1,1-DICHLOROETHENE	5.0	ND	
	METHYLENE CHLORIDE	5.0	ND	
_	t-1,2-DICHLOROETHENE		ND	
_	1,1-DICHLOROETHANE	5.0	ND	
	CHLOROFORM	5.0	ND	
	1,1,1-TRICHLOROETHAN		ND	
	CARBON TETRACHLORIDE		ND	
	1,2-DICHLOROETHANE	5.0	ND	
	TRICHLOROETHENE	5.0	ND	
	1,2-DICHLOROPROPANE Br,dic1 METHANE	5.0	ND	
	Br, dicl METHANE	5.0	ND	
	2-Clethyl Vinyl Ether	5.0	ND	
	C I'2 DICHTOKOLKOLENE	5.0	ND	
_	c-1,3-dicl PROPENE	5.0	ND	
	1,1,2-TRICHLOROETHANE TETRACHLOROETHENE diBr,Cl METHANE	5.0	ND	
	TETRACHLOROETHENE	5.0	ND	
	diBr,Cl METHANE		ND	
	CHLOROBENZENE	5.0	ND	
	BROMOFORM	5.0	ND	
_	TETRACHLOROETHANE	5.0	ND	
	1,3-DICHLOROBENZENE	5.0	ND	
	1,4-DICHLOROBENZENE	5.0	ND	
	1,2-DICHLOROBENZENE	5.0	ND	
	SURROGATE RECOVERY:	2-BROMO-1-CHLOROPROPANE(65-35%)	92 %	
	SURROGATE RECOVERY:	p-CHLOROTOLUENE (40-140%)	100 %	

J = ESTIMATED VALUE BELOW REPORTING LIMIT

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

2725 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT: DAMES & MOORE

REPORT: 1430001H(233)

2135 EAST SUNSHINE - SUITE 105

DATE : 11-29-95

SPRINGFIELD, MO 65804 ATTN: MIESCHE FRANCIS

SAMPLE MATRIX : WATER ATAS # : 14300.03

DATE SUBMITTED: 11-17-95 DATE ANALYZED: 11-21-95

METHOD REF. : SW846-8010, EPA METHODOLOGY PROJECT : #27397-005-045 - MODINE TSD SAMPLE ID : MW-3

	COMPOUND	REPORTING LIMIT (ug/L)	AMOUNT FOUND
ı	,	DIMIT (ug/II)	(ug/L)
	CHLOROMETHANE	5.0	ND
_	VINYL CHLORIDE	5.0	ND
I	BROMOMETHANE	5.0	ND
	CHLOROETHANE	5.0	ND
	triCL,Fl-METHANE	5.0	ND
	1,1-DICHLOROETHENE	5.0	ND
	METHYLENE CHLORIDE	5.0	ND
	t-1,2-DICHLOROETHENE		ND
	1,1-DICHLOROETHANE	5.0	ND
	CHLOROFORM	5.0	ND
	1,1,1-TRICHLOROETHANI		ND
_	CARBON TETRACHLORIDE	5.0	ND
	1,2-DICHLOROETHANE	5.0	ND
	TRICHLOROETHENE	5.0	ND
	1,2-DICHLOROPROPANE	5.0	ND
	Br, dicl METHANE	5.0	ND
	2-Clethyl VINYL ETHER	5.0	ND
_	t-1,3-DICHLOROPROPENE		ND
	c-1,3-dicl PROPENE	5.0	ND
	1,1,2-TRICHLOROETHANE	5.0	ND
	TETRACHLOROETHENE	5.0	ND
	diBr,Cl METHANE	5.0	ND
	CHLOROBENZENE	5.0	ND
	BROMOFORM	5.0	ND
	TETRACHLOROETHANE	5.0	ND
	1,3-DICHLOROBENZENE	5.0	ND
	1,4-DICHLOROBENZENE	5.0	ND
_	1,2-DICHLOROBENZENE	5.0	ND
	SURROGATE RECOVERY:	2-BROMO-1-CHLOROPROPANE(65-35%)	97 %
	SURROGATE RECOVERY:	p-CHLOROTOLUENE (40-140%)	

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

4745 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT: DAMES & MOORE

REPORT: 1430001H(233)

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804

DATE : 11-29-95

ATTN: MIESCHE FRANCIS

SAMPLE MATRIX : WATER ATAS # : 14300.02 DATE SUBMITTED: 11-17-95 DATE ANALYZED: 11-21-95

METHOD REF.: SW846-8010, EPA METHODOLOGY PROJECT: #27397-005-045 - MODINE TSD SAMPLE ID: MW-4

COMPOUND	REPORTING LIMIT (ug/L)	AMOUNT FOUND (ug/L)
CHLOROMETHANE	5.0	ND
VINYL CHLORIDE	5.0	ND
BROMOMETHANE	5.0	ND
CHLOROETHANE	5.0	ND
triCL, Fl-METHANE	5.0	ND
_ 1,1-DICHLOROETHENE	5.0	ND
METHYLENE CHLORIDE	5.0	ND
t-1,2-DICHLOROETHENE	5.0	ND
1,1-DICHLOROETHANE	5.0	ND
CHLOROFORM	5.0	ND
1,1,1-TRICHLOROETHAN		ND
CARBON TETRACHLORIDE	5.0	ND
1,2-DICHLOROETHANE	5.0	ND
TRICHLOROETHENE	5.0	142
1,2-DICHLOROPROPANE	5.0	ND
Br, dicl METHANE	5.0	ND
2-Clethyl VINYL ETHE		ND
t-1,3-DICHLOROPROPEN		ND
c-1,3-dicl PROPENE	5.0	ND
1,1,2-TRICHLOROETHAN		ND
TETRACHLOROETHENE	5.0	ND
diBr,Cl METHANE	5.0	ND
CHLOROBENZENE	5.0	ND
BROMOFORM	5.0	ND
TETRACHLOROETHANE	5.0	ND
1,3-DICHLOROBENZENE	5.0	ND
1,4-DICHLOROBENZENE	5.0	ND
1,2-DICHLOROBENZENE	5.0	ND
SURROGATE RECOVERY:	2-BROMO-1-CHLOROPROPANE(65-35%)	93 %
SURROGATE RECOVERY:	p-CHLOROTOLUENE (40-140%)	97 %
	(.5 1100)	J / 0

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

ATAS 875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT: DAMES & MOORE

REPORT: 1430001H(233)

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804 ATTN: MIESCHE FRANCIS

DATE: 11-29-95

SAMPLE MATRIX : WATER

ATAS # : 14300.05 DATE SUBMITTED: 11-17-95 DATE ANALYZED: 11-21-95

METHOD REF. : SW846-8010, EPA METHODOLOGY PROJECT : #27397-005-045 - MODINE TSD

SAMPLE ID : DUP-1

RESULTS REPORTED IN ug/L OR PARTS PER BILLION(PPB)

DEDODMENG

	COMPOUND	REPORTING LIMIT (ug/L)	AMOUNT FOUND (ug/L)
	CHLOROMETHANE VINYL CHLORIDE	5.0	ND
_	VINYL CHLORIDE	5.0	ND
	BROMOMETHANE	5.0	ND
	CHLOROETHANE	5.0	ND
	triCL,Fl-METHANE	5.0	ND
	triCL,Fl-METHANE 1,1-DICHLOROETHENE	5.0	ND
	METHYLENE CHLORIDE	5.0	ND
_	t-1,2-DICHLOROETHENE	5.0	ND
_	t-1,2-DICHLOROETHENE 1,1-DICHLOROETHANE CHLOROFORM	5.0	ND
	CHLOROFORM	5.0	ND
	1,1,1-TRICHLOROETHANE		ND
	CARBON TETRACHLORIDE	5.0	ND
	1,2-DICHLOROETHANE TRICHLOROETHENE 1,2-DICHLOROPROPANE Br,diCl METHANE 2-ClETHYL VINYL ETHER	5.0	ND
	TRICHLOROETHENE	5.0 5.0	154
	1,2-DICHLOROPROPANE	5.0	ND
	Br, dicl METHANE	5.0	ND
	2-Clethyl VINYL ETHER	5.0	ND
_	t-1,3-DICHLOROPROPENE c-1,3-dic1 PROPENE	5.0	ND
-	c-1,3-dicl PROPENE	5.0	ND
	1,1,2-TRICHLOROETHANE	5.0	ND
	1,1,2-TRICHLOROETHANE TETRACHLOROETHENE diBr,Cl METHANE	5.0	ND
		5.0	ND
	CHLOROBENZENE	5.0	ND
	BROMOFORM	5.0	ND
	TETRACHLOROETHANE	5.0	ND
	1,3-DICHLOROBENZENE	5.0	ND
	1,4-DICHLOROBENZENE	5.0	ND
	1,2-DICHLOROBENZENE	5.0	ND
	SURROGATE RECOVERY:	2-BROMO-1-CHLOROPROPANE(65-35%)	91 %
	SURROGATE RECOVERY:	p-CHLOROTOLUENE (40-140%)	

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

ATAS875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

CLIENT: DAMES & MOORE

REPORT: 1430001H(233)

2135 EAST SUNSHINE - SUITE 105

SPRINGFIELD, MO 65804

DATE: 11-29-95

ATTN: MIESCHE FRANCIS

SAMPLE MATRIX : WATER

ATAS # : METHOD BLANK DATE SUBMITTED: 11-17-95 DATE ANALYZED: 11-21-95

METHOD REF. : SW846-8010, EPA METHODOLOGY PROJECT : #27397-005-045 - MODINE TSD

SAMPLE ID : METHOD BLANK

	COMPOUND	REPORTING LIMIT (ug/L)	AMOUNT FOUND (ug/L)
	CHLOROMETHANE	1.0	ND
	VINYL CHLORIDE	1.0	ND
	BROMOMETHANE	1.0	ND
	CHLOROETHANE	1.0	ND
	triCL,Fl-METHANE	1.0	ND
	1,1-DICHLOROETHENE	1.0	ND
	METHYLENE CHLORIDE	1.0	ND
_	t-1,2-DICHLOROETHENE	1.0	ND
_	1,1-DICHLOROETHANE	1.0	ND
	CHLOROFORM	1.0	ND
	1,1,1-TRICHLOROETHAN	1.0	ND
	CARBON TETRACHLORIDE	1.0	ND
	1,2-DICHLOROETHANE	1.0	ND
	TRICHLOROETHENE	1.0	ND
	1,2-DICHLOROPROPANE	1.0	ND
	Br, dicl METHANE	1.0	ND
	2-Clethyl VINYL ETHER		ND
	t-1,3-DICHLOROPROPENI	1.0	ND
_	c-1,3-dicl PROPENE	1.0	ND
	1,1,2-TRICHLOROETHAN	1.0	ND
	TETRACHLOROETHENE	1.0	ND
	diBr,Cl METHANE	1.0	ND
	CHLOROBENZENE	1.0	ND
	BROMOFORM	1.0	ND
	TETRACHLOROETHANE	1.0	ND
	1,3-DICHLOROBENZENE	1.0	ND
	1,4-DICHLOROBENZENE	1.0	ND
	1,2-DICHLOROBENZENE	1.0	ND
	SURROGATE RECOVERY:	cis1,2 DICHLOROETHENE(65-135%)	92 %
	SURROGATE RECOVERY:	p-CHLOROTOLUENE (40-140%)	104 %

^{* =} OUTSIDE OF QC LIMITS ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

B = ANALYTE DETECTED IN METHOD BLANK POSSIBLY BELOW THE REPORTING LIMIT.

LABORATORY QUALITY CONTROL SEQUENCE

SAMPLE MATRIX : WATER REPORT DATE: 11-29-95

DATE ANALYZED: 11-21-95

METHOD REF. : SW846-8010, EPA METHODOLOGY

MATRIX SPIKE / MATRIX SPIKE DUPLICATE

CHLOROMETHANE 91.0 88.5 2.78 VINYL CHLORIDE 81.0 88.0 8.28 BROMOMETHANE 78.0 82.0 5.00 CHLOROETHANE 82.0 91.0 10.40 triCL,Fl-METHANE 92.5 95.0 2.67 1,1-DICHLOROETHENE 98.0 102.5 4.49 METHYLENE CHLORIDE 97.0 97.5 0.51 t-1,2-DICHLOROETHENE 99.5 99.5 0.00 1,1-DICHLOROETHANE 100.5 98.5 2.01 CHLOROFORM 98.0 98.0 0.00 1,1,1-TRICHLOROETHANE 105.0 97.5 7.41 CARBON TETRACHLORIDE 101.5 101.5 0.00 1,2-DICHLOROETHANE 101.5 99.0 2.49 TRICHLOROETHANE 101.5 99.0 2.49 TRICHLOROETHANE 99.5 102.0 2.48 1,2-DICHLOROETHANE 99.5 102.0 2.48 1,2-DICHLOROPROPANE 98.0 98.5 0.51 Br,diCl METHANE 97.5 100.0 2.53 2-CLETHYL VINYL ETHER 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-diCl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 dibr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15 BROMOFORM 94.0 94.5	COMPOUND	11590.15 MS PERCENT RECOVERY	PERCENT	PERCENT
CHLOROETHANE 82.0 91.0 10.40 CHLOROETHANE 92.5 95.0 2.67 1,1-DICHLOROETHENE 98.0 102.5 4.49 METHYLENE CHLORIDE 97.0 97.5 0.51 t-1,2-DICHLOROETHENE 99.5 99.5 0.00 1,1-DICHLOROETHANE 100.5 98.5 2.01 CHLOROFORM 98.0 98.0 0.00 1,1,1-TRICHLOROETHANE 105.0 97.5 7.41 CARBON TETRACHLORIDE 101.5 101.5 0.00 1,2-DICHLOROETHANE 101.5 99.0 2.49 TRICHLOROETHANE 99.5 102.0 2.48 1,2-DICHLOROPROPANE 98.0 98.5 0.51 Br,dicl METHANE 97.5 100.0 2.53 2-CLETHYL VINYL ETHER 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dicl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	CHLOROMETHANE	91.0	88.5	2 78
CHLOROETHANE 82.0 91.0 10.40 CHLOROETHANE 92.5 95.0 2.67 1,1-DICHLOROETHENE 98.0 102.5 4.49 METHYLENE CHLORIDE 97.0 97.5 0.51 t-1,2-DICHLOROETHENE 99.5 99.5 0.00 1,1-DICHLOROETHANE 100.5 98.5 2.01 CHLOROFORM 98.0 98.0 0.00 1,1,1-TRICHLOROETHANE 105.0 97.5 7.41 CARBON TETRACHLORIDE 101.5 101.5 0.00 1,2-DICHLOROETHANE 101.5 99.0 2.49 TRICHLOROETHANE 99.5 102.0 2.48 1,2-DICHLOROPROPANE 98.0 98.5 0.51 Br,dicl METHANE 97.5 100.0 2.53 2-CLETHYL VINYL ETHER 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dicl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	VINYL CHLORIDE	81.0	88.0	8 28
CHLOROETHANE	BROMOMETHANE	78.0	82.0	5.00
tricl, Fl-METHANE 92.5 95.0 2.67 1,1-DICHLOROETHENE 98.0 102.5 4.49 METHYLENE CHLORIDE 97.0 97.5 0.51 t-1,2-DICHLOROETHENE 99.5 99.5 0.00 1,1-DICHLOROETHANE 100.5 98.5 2.01 CHLOROFORM 98.0 98.0 0.00 1,1,1-TRICHLOROETHANE 105.0 97.5 7.41 CARBON TETRACHLORIDE 101.5 101.5 0.00 1,2-DICHLOROETHANE 101.5 99.0 2.49 TRICHLOROETHENE 99.5 102.0 2.48 1,2-DICHLOROPROPANE 98.0 98.5 0.51 Br,dicl METHANE 97.5 100.0 2.53 2-Clethyl Vinyl Ether 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dicl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,cl METHANE 91.5 92.0 0.54 <td>CHLOROETHANE</td> <td></td> <td></td> <td></td>	CHLOROETHANE			
1,1-DICHLOROETHENE 98.0 102.5 4.49 METHYLENE CHLORIDE 97.0 97.5 0.51 t-1,2-DICHLOROETHENE 99.5 99.5 0.00 1,1-DICHLOROETHANE 100.5 98.5 2.01 CHLOROFORM 98.0 98.0 0.00 1,1,1-TRICHLOROETHANE 105.0 97.5 7.41 CARBON TETRACHLORIDE 101.5 101.5 0.00 1,2-DICHLOROETHANE 101.5 99.0 2.49 TRICHLOROETHENE 99.5 102.0 2.48 1,2-DICHLOROPROPANE 98.0 98.5 0.51 Br,dic1 METHANE 97.5 100.0 2.53 2-Clethyl VINYL ETHER 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dic1 PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	triCL,Fl-METHANE			
METHYLENE CHLORIDE 97.0 97.5 0.51 t-1,2-DICHLOROETHENE 99.5 99.5 0.00 1,1-DICHLOROETHANE 100.5 98.5 2.01 CHLOROFORM 98.0 98.0 0.00 1,1,1-TRICHLOROETHANE 105.0 97.5 7.41 CARBON TETRACHLORIDE 101.5 101.5 0.00 1,2-DICHLOROETHANE 101.5 99.0 2.49 TRICHLOROETHENE 99.5 102.0 2.48 1,2-DICHLOROPROPANE 98.0 98.5 0.51 Br,dicl METHANE 97.5 100.0 2.53 2-ClETHYL VINYL ETHER 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dicl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	1,1-DICHLOROETHENE			
t-1,2-DICHLOROETHENE 99.5 99.5 0.00 1,1-DICHLOROETHANE 100.5 98.5 2.01 CHLOROFORM 98.0 98.0 0.00 1,1,1-TRICHLOROETHANE 105.0 97.5 7.41 CARBON TETRACHLORIDE 101.5 101.5 0.00 1,2-DICHLOROETHANE 101.5 99.0 2.49 TRICHLOROETHENE 99.5 102.0 2.48 1,2-DICHLOROPROPANE 98.0 98.5 0.51 Br,dicl METHANE 97.5 100.0 2.53 2-Clethyl Vinyl Ether 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dicl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15				
1,1-DICHLOROETHANE 100.5 98.5 2.01 CHLOROFORM 98.0 98.0 0.00 1,1,1-TRICHLOROETHANE 105.0 97.5 7.41 CARBON TETRACHLORIDE 101.5 101.5 0.00 1,2-DICHLOROETHANE 101.5 99.0 2.49 TRICHLOROETHENE 99.5 102.0 2.48 1,2-DICHLOROPROPANE 98.0 98.5 0.51 Br,dicl METHANE 97.5 100.0 2.53 2-ClETHYL VINYL ETHER 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dicl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	t-1,2-DICHLOROETHENE			
CHLOROFORM 98.0 98.0 0.00 1,1,1-TRICHLOROETHANE 105.0 97.5 7.41 CARBON TETRACHLORIDE 101.5 101.5 0.00 1,2-DICHLOROETHANE 101.5 99.0 2.49 TRICHLOROETHENE 99.5 102.0 2.48 1,2-DICHLOROPROPANE 98.0 98.5 0.51 Br,dicl METHANE 97.5 100.0 2.53 2-ClETHYL VINYL ETHER 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dicl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15				
1,1,1-TRICHLOROETHANE 105.0 97.5 7.41 CARBON TETRACHLORIDE 101.5 101.5 0.00 1,2-DICHLOROETHANE 101.5 99.0 2.49 TRICHLOROETHENE 99.5 102.0 2.48 1,2-DICHLOROPROPANE 98.0 98.5 0.51 Br,dicl METHANE 97.5 100.0 2.53 2-ClETHYL VINYL ETHER 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dicl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	CHLOROFORM			
CARBON TETRACHLORIDE 101.5 101.5 0.00 1,2-DICHLOROETHANE 101.5 99.0 2.49 TRICHLOROETHENE 99.5 102.0 2.48 1,2-DICHLOROPROPANE 98.0 98.5 0.51 Br,dicl METHANE 97.5 100.0 2.53 2-Clethyl Vinyl Ether 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dicl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	1,1,1-TRICHLOROETHANE			
1,2-DICHLOROETHANE 101.5 99.0 2.49 TRICHLOROETHENE 99.5 102.0 2.48 1,2-DICHLOROPROPANE 98.0 98.5 0.51 Br,diCl METHANE 97.5 100.0 2.53 2-ClETHYL VINYL ETHER 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-diCl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	CARBON TETRACHLORIDE	101.5		
TRICHLOROETHENE 99.5 102.0 2.48 1,2-DICHLOROPROPANE 98.0 98.5 0.51 Br,dicl METHANE 97.5 100.0 2.53 2-ClETHYL VINYL ETHER 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dicl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	1,2-DICHLOROETHANE	101.5		
1,2-DICHLOROPROPANE 98.0 98.5 0.51 Br,dicl METHANE 97.5 100.0 2.53 2-ClETHYL VINYL ETHER 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dicl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15				
Br,dicl METHANE 97.5 100.0 2.53 2-Clethyl Vinyl Ether 43.0 13.0 107.14 c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dicl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	1,2-DICHLOROPROPANE	98.0	98.5	
c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dicl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	Br, dicl METHANE	97.5	100.0	
c-1,3-DICHLOROPROPENE 100.5 99.0 1.50 t-1,3-dicl PROPENE 96.5 98.0 1.54 1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	2-Clethyl VINYL ETHER	43.0	13.0	
1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	c-1,3-DICHLOROPROPENE	100.5		1.50
1,1,2-TRICHLOROETHANE 100.0 103.5 3.44 TETRACHLOROETHENE 99.0 104.5 5.40 diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	t-1,3-dicl PROPENE	96.5	98.0	1.54
diBr,Cl METHANE 91.5 92.0 0.54 CHLOROBENZENE 94.5 99.5 5.15	1,1,2-TRICHLOROETHANE	100.0	103.5	3.44
CHLOROBENZENE 94.5 99.5 5.15			104.5	5.40
DDOMODODY 3.13		91.5	92.0	0.54
BROMOFORM 94.0 94.5 0.53	THE CONTRACTOR OF THE CONTRACT	94.5	99.5	5.15
51.0		94.0		0.53
TETRACHLOROETHANE 93.5 91.5 2.16		,,,,	91.5	
1,3-DICHLOROBENZENE 95.0 100.0 5.13			100.0	5.13
1,4-DICHLOROBENZENE 95.5 98.5 3.09				3.09
1,2-DICHLOROBENZENE 95.5 97.0 1.56	1,2-DICHLOROBENZENE	95.5	97.0	1.56

AMERICAN TECHNICAL & ANALYTICAL SERVICES, Inc. 875 Fee Fee Road • Maryland Heights, MO 63043-3211 • Office (314) 434-4570 • FAX (314) 434-0080

CHAIN OF CUSTODY RECORD

ATAS Client Nan Miceche Fro	ings Dai	mes è 1			Containers	Туре	e of Anal	ysis	/		/		$\overline{/}$	/	/		Preservative	
Project Name	SD	Project #	7-005	-04	ntaii											/ /	/	Initials W
Form Completed	By	12101	PO#	<u> </u>	ا 3 ا		À	8010	/	/ /	/ /	/ /	/ /		/ /			
M.F.	Sample	Sample	Sample				58	\y _	/ ,	/ ,	/ ,	/ ,	/ ,	/ ,	/ /			11-17-95
Sample ID	Date	Time	Matrix	Grab	S S	/_	\$									Rema	rks	Location/Temp o
Trip Blank	11-9-95	1405	Water	/	1	X									Be	portin	a level	14300.01
mw-4	11-1595	1525	Water	\vee	2	X									Cox	TOF	- 5mb	. 1 02
MW-3	11-15-95	1630	Water	U	2	X									10.	100	V PP	03
mw-2	11-15-95	1745	Water	J	2	X											,	1 OA
DuP-1	11-15-95	1520	Water	J	2	X			,			=						05
MIII-I	11-1595	1416	Water	J	12	X												1 06
			0 - 00 - 0															
						†												
								\dashv										
								-									***************************************	
								\dashv										
Relinquish	d by:	/ / Red	ceived by	-		Relinqui	shed by	L		1	Red	ceived	by:			Turn	around Requ	irements
Alyanto	Trul CID	1/ 1/ Melte											•				_ 1 to 2 work	ing days
Signature	- Junico-	Signature		s	ignature					Signati	ure						_ 3 working o	days $\mathcal{S}^{\mathcal{N}}$
Miesche F	rancis	WALT	EX JU	Si													_ 5 working o	days D K D
Printed Name	1. –	Printed Name	? ```	Р	rinted Name	e				Printed	Name	D.				X	_ 10 working	The sale of
Dames E 1	MOORE	771	P()													•		gays W. J. /V
1) 11. 05	1100	Firm	T 00	32 /	irm					Firm					Pi	reservative	_ 15 working a codes	days days days days days days days
Date/Time	1100	Date/Time	5 D		ate/Time	***************************************	1			Date/T	ime					A - nor B - HN	ie	1 30
SEND RESULTS TO (Name & Company) :																C - H2S	SO ₄	
OLIND INC.	SSETO TO (Maine	a company).														D - Nac		
			Origin	al to ATAS	/Copy to Client											F	_	